tìm gtnn, gtln của A= \(\sqrt{1-x}+\sqrt{1+x}\)
Tìm GTNN và GTLN của A=\(\sqrt{1-x}\)\(+\sqrt{1+x}\)
\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\sqrt{2}\le A\le2\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTLN và GTNN của A= 3\(\sqrt{x-1}+4\sqrt{5-x}\) với 1≤x≤5
\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)
\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)
\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)
\(A_{min}=6\) khi \(x=5\)
tìm GTNN GTLN của \(A=\frac{1}{\sqrt{x}-1}vàB=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
tìm gtln gtnn của hàm số
\(y=\sqrt{1+x}+\sqrt{1-x}+\dfrac{x^2}{4}\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
Tìm GTLN và GTNN của B = \(\dfrac{x-\sqrt{x}}{\sqrt{x}-\left(x+1\right)}\)
\(B=\dfrac{x-\sqrt[]{x}}{\sqrt[]{x}-\left(x+1\right)}\)
\(B\) xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-\left(x+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x+1\ne0,\forall x\in R\end{matrix}\right.\) \(\Leftrightarrow x\ge0\)
\(\Leftrightarrow B=\dfrac{x-\sqrt[]{x}+1-1}{-\left(x-\sqrt[]{x}+1\right)}\)
\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+1}\)
\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+1}\)
\(\Leftrightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
mà \(\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\ge0\)
\(\Rightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le-1+\dfrac{4}{3}=\dfrac{1}{3}\)
\(\Rightarrow GTLN\left(B\right)=\dfrac{1}{3}\left(tại.x=\dfrac{1}{4}\right)\)
Tìm GTLN,GTNN của A= \(\sqrt{1-x}+\sqrt{1+x}\)
Tìm GTLN, GTNN của
A= \(\sqrt{x+1}+\sqrt{3-x}-2\sqrt{\left(x+1\right)\left(3-x\right)}\)
Tìm GTNN GTLN của A= \(\frac{1}{\sqrt{x}-1}\) và B=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)