Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng nguyễn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2022 lúc 20:33

\(3x^2+y^2+2x-2y-1=0\)

\(\Leftrightarrow x^2+2x\left(x+y\right)-2xy+y^2+2x-2y-1=0\)

\(\Leftrightarrow x^2+2-2xy+y^2+2x-2y-1=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)

\(\Leftrightarrow\left(x-y+1\right)^2=0\)

\(\Leftrightarrow x-y+1=0\)

\(\Leftrightarrow y=x+1\)

Thế vào \(x\left(x+y\right)=1\)

\(\Rightarrow x\left(2x+1\right)=1\)

\(\Leftrightarrow2x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Nguyễn Thị Yến
Xem chi tiết
Thu Thao
12 tháng 1 2021 lúc 22:35

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

Thu Thao
12 tháng 1 2021 lúc 22:57

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 1\)

Mà \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)  2 số này đều là bình phương của một số nguyên

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Trần Nguyễn Xuân Khôi
Xem chi tiết
Akai Haruma
7 tháng 1 2022 lúc 22:30

Đề không đủ. Bạn coi lại.

Trần Nguyễn Xuân Khôi
Xem chi tiết
Akai Haruma
8 tháng 1 2022 lúc 22:12

Lời giải:
$xy^2+2x-y^2=8$

$(xy^2-y^2)+(2x-2)=6$

$y^2(x-1)+2(x-1)=6$

$(y^2+2)(x-1)=6$

Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2018 lúc 17:36

Theo đầu bài ta có: log 2x+ log2y=log4(x+y) hay 2 log 2(xy) =log2(x+y)

Suy ra x+y=(xy) 2 

Đặt u= x+ y; v= xy  ta có điều kiện u2-4v≥0; u>0; v>0 .

Mà 

Ta có 

nên minP=  2 4 3 khi 

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 5 2019 lúc 7:06

Chọn C.

Phương pháp: Đưa bài toán về tìm m để hệ có nghiệm duy nhất.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2019 lúc 16:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2019 lúc 7:39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 13:17

log x 2 + y 2 + 2 4 x + 4 y - 4 ≥ 1

⇔ 4 x + 4 y - 4 ≥ x 2 + y 2 + 2 ⇔ x - 2 2 + y - 2 2 ≤ 2

Đây là tập hợp tất cả các điểm nằm trên và trong đường tròn tâm I(2;2) bán kính ℝ ' = m .

Ta có I I ' = 10 . m nhỏ nhất để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0  thì hai đường tròn nói trên tiếp xúc ngoài

⇒ R + R ' = I I ' ⇔ m + 2 = 10 ⇔ m = 10 - 2 2

Đáp án cần chọn là B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 5:15

Đáp án A