Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thúy
Xem chi tiết
Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 1:10

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2018 lúc 17:12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2019 lúc 15:34

Đáp án : C

Vu do
Xem chi tiết
Lê Mạnh Cường
Xem chi tiết
vo nhi
25 tháng 4 2018 lúc 20:00

de ***** tu lam dihihi

Nguyễn Hoài Thương
Xem chi tiết
Mirai
21 tháng 3 2021 lúc 15:23

undefined

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 10:20

Gọi N là trung điểm AB

Trong tam giác vuông ABH, HN là trung tuyến ứng với cạnh huyền

\(\Rightarrow HN=\dfrac{1}{2}AB=AN\Rightarrow\Delta AHN\) cân tại N

\(\Rightarrow\widehat{BAH}=\widehat{AHN}=\widehat{MAC}\) (1)

Trong tam giác ABC, MN là đường trung bình \(\Rightarrow MN||AC\)  (2)

\(\Rightarrow\widehat{NMA}=\widehat{MAC}\) (3)

(1);(3) \(\Rightarrow\widehat{AHN}=\widehat{NMA}\) \(\Rightarrow\) tứ giác AMHN nội tiếp

\(\Rightarrow\widehat{ANM}=\widehat{AHM}=90^0\) (cùng chắn AM) hay \(MN\perp AB\) (4)

(2);(4) \(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}3x-y+8=0\\3x+y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

AM là trung tuyến ứng với cạnh huyền trong tam giác vuông 

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{3\sqrt{10}}{2}\)

Từ vecto pháp tuyến của AM và AM ta có:

\(cos\widehat{HAM}=\dfrac{\left|3.3-1.1\right|}{\sqrt{3^2+\left(-1\right)^2}.\sqrt{3^2+1^2}}=\dfrac{4}{5}\)

\(\Rightarrow AH=AM.cos\widehat{HAM}=\dfrac{6\sqrt{10}}{5}\)

Do H thuộc AH nên tọa độ có dạng: \(H\left(a;3a+8\right)\Rightarrow\overrightarrow{AH}=\left(a+1;3a+3\right)\)

\(\Rightarrow\left(a+1\right)^2+\left(3a+3\right)^2=\left(\dfrac{6\sqrt{10}}{5}\right)^2\)

\(\Rightarrow\) Giải ra a \(\Rightarrow\) tọa độ H \(\Rightarrow\) phương trình BC qua H và vuông góc AH nên nhận \(\left(1;3\right)\) là 1 vtpt

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 10:21

undefined

Giang Linh
Xem chi tiết
Thu Hà Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2023 lúc 13:25

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn