cho tam giác ABC trọng tâm G Chứng minh
cot C - cot \(\widehat{AGB}\) = \(\frac{a^2+b^2+c^2}{6S}\)
Cho tam giác ABC có G là trọng tâm . Đặt \(\widehat{GBC}=\alpha\), \(\widehat{GBC}=\beta\), \(\widehat{GCA}=\gamma\). Chứng minh rằng \(\cot\alpha+\cot\beta+\cot\gamma=\frac{3\left(a^2+b^2+c^2\right)}{4S}\)
Cho tam giác ABC. Chứng minh rằng:
\(\cot A + \cot B + \cot C = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\)
Áp dụng hệ quả của định lí sin và định lí cosin, ta có:
\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)
và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)
Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)
\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)
Cho tam giác ABC có ba góc với : \(cot\left(\widehat{\dfrac{A}{2}}\right);cot\dfrac{\widehat{B}}{2};cot\left(\widehat{\dfrac{C}{2}}\right)\) theo thứ tự đó lập thành một cấp số cộng. Chứng minh ba cạnh tương ứng theo thứ tự đó cũng tạo thành một cấp số cộng
gọi a,b,c là 3 cạnh của tam giác.
Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)
<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)
<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)
<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)
<=> a+c =2b
=> 3 cạnh của tam giác tạo thành cấp số cộng.
TAM GIÁC ABC CÓ CÁC GÓC THỎA MÃN:
\(\tan\frac{A}{2}+\tan\frac{B}{2}\)\(\le\tan\frac{C}{2}\)VÀ \(\cot\frac{A}{2}+\cot\frac{B}{2}\le2\cot\frac{C}{2}\)
CHỨNG MINH TAM GIÁC ABC LÀ TAM GIÁC ĐỀU
Đề sai. Giả sử tam giác là tam giác đều thì ta có:
\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)
Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.
Sửa đề:
\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)
\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)
\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)
Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)
\(\Rightarrow A=B\)
Thế lại hệ ban đầu ta được
\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)
Dấu = xảy ra khi \(A=C\)
Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.
Cho tam giác ABC, có 3 cạnh a, b, c, theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng : \(\cot\frac{A}{2}.\cot\frac{C}{2}=3\)
Nếu 3 cạnh a, b, c lập thành cấp số cộng thì ta có a + c = 2b
\(\Leftrightarrow\sin A+\sin C=2\sin B\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A-C}{2}=4\sin\frac{B}{2}\cos\frac{B}{2}\left(1\right)\)
Vì \(A+C=180^0-B\Rightarrow\frac{A+C}{2}=90^0-\frac{B}{2}\)
<=> \(\sin\frac{A+C}{2}=\sin\left(90^0-\frac{B}{2}\right)=\cos\frac{B}{2}\) hoặc \(\cos\frac{A+C}{2}=\cos\left(90^0-\frac{B}{2}\right)=\sin\frac{B}{2}\) (*)
Do đó (1) trở thành :
\(\Leftrightarrow\sin\frac{A+C}{2}\cos\frac{A-C}{2}=2\sin\frac{A+C}{2}\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\sin\frac{B}{2}\)
\(\Leftrightarrow\cos\frac{A-C}{2}=2\cos\frac{A+C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}+\sin\frac{A}{2}\sin\frac{C}{2}=2\cos\frac{A}{2}\cos\frac{C}{2}-2\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}=3\sin\frac{A}{2}\sin\frac{C}{2}\)
\(\Leftrightarrow\cot\frac{A}{2}\cot\frac{C}{2}=3\) => Điều phải chứng minh
Cho tam giác ABC có \(\cot\frac{A}{2},\cot\frac{B}{2},\cot\frac{C}{2}\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng 3 cạnh a, b, c đó cũng lập thành cấp số cộng ?
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
Chứng minh trong mọi tam giác ABC ta đều có :
a) \(\tan\frac{A}{2}.\tan\frac{B}{2}+\tan\frac{B}{2}.\tan\frac{C}{2}+\tan\frac{C}{2}.\tan\frac{A}{2}=1\)
b) \(\cot A.\cot B+\cot B.\cot C+\cot C.\cot A=1\)
TAM GIÁC ABC CÓ CÁC GÓC THỎA MÃN:
\(\tan\frac{A}{2}+\tan\frac{B}{2}\)\(\le\tan\frac{A}{2}+\cot\frac{B}{2}\le\)\(2\cot\frac{C}{2}\)
CHỨNG MINH TAM GIÁC ABC LÀ TAM GIÁC ĐỀU
cho tam giác ABC . Chứng minh rằng : a) cot A = b2 + c2 - a2 / 4S ( S là diện tích tam giác ABC ) ; b) cot A + cot B + cot C = a2 + b2 + c2 / 4S
/ nghĩa là phân số