.Cho tam giác ABC có A(4;3) , B(0; 5) , C(6; 2) .
a) Chứng minh :ABC vuông tại B . Tính diện tích tam giác ABC.
b) Tìm tọa độ điểm K là chân đường cao kẻ từ B của tam giác ABC.
c) Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
d) Tìm tọa độ điểm J là tâm đường tròn nội tiếp tam giác ABC.
trong mạt phẳng Oxy cho tam giác ABC có A(-1,0) , B(1,2) , C(5,-2) : a) hỏi tam giác ABC là tam giác gì ? Tính diện tích tam giác ABC ; b) gọi H là chân đường cao kẻ từ B của tam giác ABC . Tìm tọa độ của H .
Trong mặt phẳng toạ độ Oxy cho tam giác ABC có : A(3,1) B(5,3) C(-1,1)
a) chứng tỏ tam giác ABC vuông cân
b) Tìm toạ độ của điểm M biết vecto MA - 2 vecto MB + 4 vecto MC = vector 0
c) tính diện tích tam giác ABC
d) Tìm N thuộc Oy để NB + NC nhỏ nhất
gọi M là mộ t điểm bất kỳ nằm trong tam giác, Sa , Sb , Sc lần lượt là diện tích tam giác MBC, MCA, MAB. Chứng mnh rằng \(S_a\overrightarrow{MA}+S_b\overrightarrow{MB}+S_c\overrightarrow{MC}=\overrightarrow{0}\)
Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A(0;2), B(-2;0), C(-2;2):
a) Tính tích vô hướng . Từ đó suy ra hình dạng của tam giác ABC.
b) Tìm tọa D sao cho tứ giác ACBD là hình bình hành.
Chứng minh
a) \(\dfrac{\sin2x+\sin4x+\sin6x}{2\left(1-\cos x\right)}=\cot^4\dfrac{x}{2}\)
b) \(\dfrac{1-\sin2x}{1+\sin2x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
trong mặ phẳng toạ độ OXY cho A (1:2) B (1:-3) C(5;-3)
1) tính độ dài AB
2) tính chu vi tam giác ABC
3) tính diện tích tam giác ABC
4) tính toạ độ chân đường cao kẻ từ B
5) tìm toạ độ trên đường tròn ngoại tiếp tam giác ABC
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2
gọi H là trực tâm của tam giác không vuông ABC . Chứng minh rằng bán kính các đường tròn ngoại tiếp các tam giác ABC , HBC . HCA . HAB bằng nhau