Chứng minh trong mọi tam giác ABC ta đều có :
a) \(\tan\frac{A}{2}.\tan\frac{B}{2}+\tan\frac{B}{2}.\tan\frac{C}{2}+\tan\frac{C}{2}.\tan\frac{A}{2}=1\)
b) \(\cot A.\cot B+\cot B.\cot C+\cot C.\cot A=1\)
Cho tam giác ABC , chứng minh rằng tan \(\left(\dfrac{B+C}{2}\right)\)= cot \(\dfrac{A}{2}\)
Cho tam giác abc có bc=a ca=b ab=c (b khác c) diện tích s biết b^2+c^2>=2a^2 1) chứng minh 4S/(tanA)>=a^2 2) gọi o g lần lượt là tâm đg tròn ngoại tiếp và trọng tâm tam giác abc M là trung điểm bc chứng minh góc MGO không nhọn
Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)
Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180
b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{}\alpha< \frac{3\pi}{2}\right)\)
Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)
b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)
Bài 5) Chứng minh các hệ thức sau:
a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)
b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)
c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)
d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)
Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)
Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)
Bài 8) Chứng minh các biểu thức sau:
a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)
b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)
c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)
Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:
a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)
Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:
a) \(tanA+tanB+tanC=tanAtanBtanC\)
b) \(cotAcotB+cotBcotC+cotCcotA=1\)
Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:
a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)
b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)
cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC
\(\Delta ABC\) có \(\dfrac{\cot^2A}{2}.\dfrac{\cot B}{2}.\dfrac{\cot C}{2}=\dfrac{b^2c^2}{16r^4}\). Tính GTBT \(T=\dfrac{2020a^2}{a^2+b^2+c^2}\)
Bạn nào giúp mình vs nhá:===thanks mọi người nhiều lắm^^
1/ cho tam giác ABC. cmr:
\(\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}=\dfrac{1}{2}.\left(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}+cot\dfrac{A}{2}.cot\dfrac{B}{2}.cot\dfrac{C}{2}\right)\)
2,cmr:
\(\left(a-b\right)tan\dfrac{A}{2}.tan\dfrac{B}{2}+\left(b-c\right)tan\dfrac{B}{2}.tan\dfrac{C}{2}+\left(c-a\right)tan\dfrac{C}{2}.tan\dfrac{A}{2}=0\)
cmr nếu G là trọng tâm tam giác ABC thì vtGB.vtGC=1/18 (b^2+c^2-5a^2)
Làm ơn giải nhanh giúp mình, mai mình phài nộp bài rồi
Chứng minh
a. sin2.tan +cos2.cot + 2sin.cos= tan + cot
b. \(\frac{1+sin^2}{^{ }1-sin^2}=1+2tan^2\)
c. \(\frac{cos}{1=sin}+tan=\frac{1}{cos}\)
d. \(\frac{sin}{1+cos}+\frac{1+cos}{sin}=\frac{2}{sin}\)