Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thị Thu Thảo
Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

tthnew
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

Thùy Thùy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 18:48

Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt[]{5c+4}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2\le x;y;z\le3\\x^2+y^2+z^2=5\left(a+b+c\right)+12=17\end{matrix}\right.\)

Ta cần tìm GTNN của \(A=x+y+z\)

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Hoàn toàn tương tự ta có: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế: \(x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Khách vãng lai đã xóa
Witch Rose
Xem chi tiết
Kurosaki Akatsu
6 tháng 6 2017 lúc 19:01

Tìm trước khi hỏi : 

Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học

Thành viên
6 tháng 6 2017 lúc 19:09

Witch Rose

a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> không âm và  nên 

a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

⇔(5a+4)(5b+4)≥4(5a+5b+4)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

⇔(5a+4+5b+4)2≥(2+5a+5b+4)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

⇔5a+4+5b+4≥2+9−5c=2+13−t2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

tth_new
16 tháng 5 2019 lúc 10:41

Em nghĩ đề là \(a,b,c\ge0\) thì dấu "=" mới xảy ra chứ ạ?Nếu như thế thì có lẽ là như vầy:

Do \(a,b,c\ge0\) và \(a+b+c=1\Rightarrow0\le a;b;c\le1\) (1)

Ta sẽ c/m BĐT phụ: \(\sqrt{5a+4}\ge a+2\)

\(\Leftrightarrow5a+4\ge a^2+4a+4\)

\(\Leftrightarrow a^2-a\le0\Leftrightarrow a\left(a-1\right)\le0\Leftrightarrow0\le a\le1\) (đúng theo (1)

Tương tự với 2 BĐT còn lại và cộng theo vế ta được: \(VT\ge\left(a+b+c\right)+6=7^{\left(đpcm\right)}\)

Easylove
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
7 tháng 3 2020 lúc 11:35

Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)

\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)

\(=2a+1+2b+1+2c+1=7\) .

Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị

Khách vãng lai đã xóa
Trương Tuấn Dũng
Xem chi tiết
Thắng Nguyễn
23 tháng 6 2016 lúc 6:41

nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Huyen Tạ
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Lê Tuấn Nghĩa
Xem chi tiết
Girl
8 tháng 7 2019 lúc 16:37

Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)

\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)

\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)

\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1

Mai Nhâm Thị Ngọc
Xem chi tiết
Game Master VN
9 tháng 7 2017 lúc 16:29

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]