Cho a,b,c ≥ 0 và a+b+c =1 . Tìm giá trị nhỏ nhất của T = \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
Cho a, b, c ≥ 0 thỏa mãn: a + b + c = 1
. Tìm GTNN của biểu thức: T = \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).
Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)
\(\Rightarrow5a+4\ge\left(a+2\right)^2\)
\(\Rightarrow\sqrt{5a+4}\ge a+2\).
Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).
Cộng vế với vế ta có \(T\ge a+b+c+6=7\).
Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.
Vậy Min T = 7 khi a = 1; b = c = 0.
Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)
Do $0\leq a \leq 1$ nên $a\ge a^2.$
Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)
Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)
rồi đi chọn $m,n$ theo điểm rơi.
Không biết còn cách nào khác không nhỉ?
Cho a,b,c là các số không âm thỏa: a+b+c=1. tìm giá trị nhỏ nhất của A= \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt[]{5c+4}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2\le x;y;z\le3\\x^2+y^2+z^2=5\left(a+b+c\right)+12=17\end{matrix}\right.\)
Ta cần tìm GTNN của \(A=x+y+z\)
Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)
Hoàn toàn tương tự ta có: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)
Cộng vế với vế: \(x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=7\)
\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
cho a,b,c >0,a+b+c=1
\(CMR:\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}>=7\)
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> nên
không âm vàa,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔(5a+4)(5b+4)≥4(5a+5b+4)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔(5a+4+5b+4)2≥(2+5a+5b+4)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔5a+4+5b+4≥2+9−5c=2+13−t2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Em nghĩ đề là \(a,b,c\ge0\) thì dấu "=" mới xảy ra chứ ạ?Nếu như thế thì có lẽ là như vầy:
Do \(a,b,c\ge0\) và \(a+b+c=1\Rightarrow0\le a;b;c\le1\) (1)
Ta sẽ c/m BĐT phụ: \(\sqrt{5a+4}\ge a+2\)
\(\Leftrightarrow5a+4\ge a^2+4a+4\)
\(\Leftrightarrow a^2-a\le0\Leftrightarrow a\left(a-1\right)\le0\Leftrightarrow0\le a\le1\) (đúng theo (1)
Tương tự với 2 BĐT còn lại và cộng theo vế ta được: \(VT\ge\left(a+b+c\right)+6=7^{\left(đpcm\right)}\)
Cho a, b, c ≥ 0 thoả mãn a+b+c=1. Cmr: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge7\)
Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)
\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)
\(=2a+1+2b+1+2c+1=7\) .
Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị
Cho a,b,c>=0 thoả mãn a+b+c=1
Chứng minh rằng\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}>=7\)
nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Cho a,b,c \(\ge\)0 , a+b+c=1.
Cm : \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)\(\ge\)7
Cho ba số dương a,b,c thoả mãn: a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{a}{\sqrt{b^3+5b^2-3b+18}}+\frac{b}{\sqrt{c^3+5c^2-3c+18}}+\frac{c}{\sqrt{a^3+5a^2-3a+18}}\)
Cho a,b,c ko âm , và a+b+c=1
CMR \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge7\)
Mn giải gấp hộ mk đc ko ạ?
Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1
Cho các số dương a,b,c thỏa mãn abc=1.CMR :\(\frac{1}{\sqrt{5a+4}}+\frac{1}{\sqrt{5b+4}}+\frac{1}{\sqrt{5c+4}}\le1..\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]