Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2017 lúc 10:37

Ta có (1)  ⇔ x 4 + x 2 + 20 = y 2 + y

Ta thấy:  x 4 + x 2 < x 4 + x 2 + 20 ≤ x 4 + x 2 + 20 + 8 x 2 ⇔ x 2 ( x 2 + 1 ) < y ( y + 1 ) ≤ ( x 2 + 4 ) ( x 2 + 5 )

Vì x, y Z nên ta xét các trường hợp sau

+ TH1.  y ( y + 1 ) = ( x 2 + 1 ) ( x 2 + 2 ) ⇔ x 4 + x 2 + 20 = x 4 + 3 x 2 + 2 ⇔ 2 x 2 = 18 ⇔ x 2 = 9 ⇔ x = ± 3

Với  x 2 = 9   ⇒ y 2 + y = 9 2 + 9 + 20 ⇔ y 2 + y − 110 = 0 ⇔ y = 10 ; y = − 11 ( t . m )

+ TH2  y ( y + 1 ) = ( x 2 + 2 ) ( x 2 + 3 ) ⇔ x 4 + x 2 + 20 = x 4 + 5 x 2 + 6 ⇔ 4 x 2 = 14 ⇔ x 2 = 7 2   ( l o ạ i )

+ TH3: y ( y + 1 ) = ( x 2 + 3 ) ( x 2 + 4 ) ⇔ 6 x 2 = 8 ⇔ x 2 = 4 3   ( l o ạ i )

+ TH4:  y ( y + 1 ) = ( x 2 + 4 ) ( x 2 + 5 ) ⇔ 8 x 2 = 0 ⇔ x 2 = 0 ⇔ x = 0

Với  x 2 = 0  ta có  y 2 + y = 20 ⇔ y 2 + y − 20 = 0 ⇔ y = − 5 ; y = 4

Vậy PT đã cho có nghiệm nguyên (x;y) là :

(3;10), (3;-11), (-3; 10), (-3;-11), (0; -5), (0;4).

ѕнєу
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 6 2021 lúc 11:13

\(\Leftrightarrow\)\(4y^2+12y=4x^4+4x^2+72\)

\(\Leftrightarrow\left(2y+3\right)^2=\left(2x^2+1\right)^2+80\)

\(\Leftrightarrow\left(2y+3\right)^2-\left(2x^2+1\right)^2=80\)

\(\Leftrightarrow\left(2y+3-2x^2-1\right)\left(2y+3+2x^2+1\right)=80\)

\(\Leftrightarrow\left(y-x^2+1\right)\left(y+x^2+2\right)=20\)

Do \(x,y\in Z\) => \(y+1-x^2;y+x^2+2\in Z\)

=>\(y+1-x^2;y+x^2+2\inƯ\left(20\right)\)

Kẻ bảng làm nốt nha.

 

Nguyễn Thị Yến
Xem chi tiết
Thu Thao
12 tháng 1 2021 lúc 22:35

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

Thu Thao
12 tháng 1 2021 lúc 22:57

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 1\)

Mà \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)  2 số này đều là bình phương của một số nguyên

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

nguyễn công quốc bảo
Xem chi tiết
Nguyễn Văn A
11 tháng 3 2023 lúc 20:32

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

Nam Vũ
Xem chi tiết
Long Hoang
Xem chi tiết
Nguyễn Văn Nhân
28 tháng 3 2023 lúc 14:43

x=1 , y= 2

2019.\(x^2\) + y2 = 2023

Dùng phương pháp đánh giá tìm nghiệm nguyên em nhé.

Vì \(x\), y \(\in\) Z+ => \(x\); y ≥ 1

Với \(x\) = 1; y = 1 => 2019.12 + 12 = 2020 (loại)

Với \(x\) = 1; y = 2 => 2019.12 + 22 = 2023 ( thỏa mãn)

Với \(x\) > 1; y > 2 => 2019.\(x\) + y > 2019.12 + 22 = 2023

Vậy \(x\) = 1; y = 2 là  nghiệm nguyên duy nhất thỏa mãn đề bài.

Kết luận: (\(x\); y) =( 1; 2)

 

L Mao
Xem chi tiết
LqeftRn Lqeft
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 11 2023 lúc 9:20

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2019 lúc 13:06

Xét hàm  trên  ℝ  và đi đến kết quả 

Nguyễn Minh Nhật
Xem chi tiết
Xyz OLM
25 tháng 7 2023 lúc 0:11

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:19

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:32

Tiếp tục phần tiếp theo

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)

⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài