Cho a và b là các số thực không âm. Chứng minh rằng \(a^5+b^5\ge a^3b^2+a^2b^3\)
Cho a,b là các số thực không âm. Chứng minh rằng \(a^3+b^3\ge a^2b+ab^2\)
ta có
\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) luôn đúng do a,b không âm
Nguyễn Minh Quang thầy thiếu dấu "=" xảy ra rồi
Đẳng thức xảy ra <=> a = b
Chứng minh rằng : \(a^5+b^5\ge a^3b^2+a^2b^3\) với \(a,b\ge0\)
Xét \(a^5+b^5-a^3b^2-a^2b^3\)
\(=a^3\left(a+b\right)\left(a-b\right)-b^3\left(b-c\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(a^4-a^3b-b^4-ab^3\right)=\left(a+b\right)a^4+\left(a^4+2a^3b+b^2a^2-2a^2a^2-2ab^3-a^3b+a^2a^2-2ab^3+b^4\right)\)\(=\left(a+b\right)\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đpcm)
P/S cchs hơi chậm nhưng dừng chửi nhá
Cho a,b là 2 số thực không âm thỏa mãn: \(a+b\le2\). Chứng minh:\(\dfrac{2+a}{1+a}+\dfrac{1-2b}{1+2b}\ge\dfrac{8}{7}\)
\(VT=1+\dfrac{1}{1+a}+\dfrac{2}{1+2b}-1=2\left(\dfrac{1}{2+2a}+\dfrac{1}{1+2b}\right)\)
\(VT\ge\dfrac{8}{3+2\left(a+b\right)}\ge\dfrac{8}{3+2.2}=\dfrac{8}{7}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)
cho các số thực a,b không âm:
Chứng minh rằng: \(\left(a^2+b+\frac{3}{4}\right)+\left(b^2+a+\frac{3}{4}\right)\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?
Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?
https://toanmath.com/2016/07/ki-thuat-su-dung-bat-dang-thuc-co-si-nguyen-cao-cuong.html
cho a b c là các số thực dương thỏa mãn ab^2+bc^2 +ca^2=3 . Chứng minh rằng : (2a^5+3b^5)/ab +(2b^5+3c^5)/bc +(2c^5+3a^5)ca >= 15(a^3 +b^3 +c^3-2)
Cho các số thực dương a,b. Chứng minh rằng:
a/ \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)
b/ \(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\ge1\)
c/ \(\dfrac{a}{2b}+\dfrac{2b}{a+b}+\dfrac{ab}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
a) Sai với \(a=1,b=2\)
b)
Thực hiện biến đổi tương đương:
\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$
c) BĐT sai với \(a=1,b=2\)
Cho a,b,c là các số thực không âm. Chứng minh a3 + 2b3 + c3 \(\ge\)b2(a+c) + b(a2+c2)
\(a^3+2b^3+c^3\ge b^2\left(a+c\right)+b\left(a^2+c^2\right)\)
\(\Leftrightarrow a^3+2b^3+c^3-b^2\left(a+c\right)-b\left(a^2+c^2\right)\ge0\)
\(\Leftrightarrow\left(a^3+b^3-b^2a-ab^2\right)+\left(c^3+b^3-b^2c-bc^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\)( đúng )
Vậy ta có ĐPCM
Cho các số ko âm a,b,c.Chứng minh
(\(a^2\)+1)(\(a^2b^2\)+4)(\(a^2b^2c^2\)+16) \(\ge\)64\(a^3b^2c\)
Ta có:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\a^2b^2+4\ge4ab\\a^2b^2c^2+16\ge8abc\end{matrix}\right.\)
Nhân vế với vế:
\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}a=1\\b=2\\c=2\end{matrix}\right.\)
Mạnh hơn BĐT Schur
Cho a,b,c là các số thực không âm,chứng minh rằng:
\(a^3+b^3+c^3\ge\frac{\left(ab^2+bc^2+ca^2\right)^2}{a^2b+b^2c+c^2a}+\frac{\left(a^2b+b^2c+c^2a\right)^2}{ab^2+bc^2+ca^2}\)
Ở đây chúng tôi không SOS hay ST s o s cái gì hết :P
Cho a = b = c = 1 thử xem:P