Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khoa Nguyên
Xem chi tiết
@Nk>↑@
19 tháng 12 2019 lúc 19:40

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{1}=1\)

\(\sqrt{2x^2-12x+22}=\sqrt{2\left(x^2-6x+11\right)}=\sqrt{2\left(x-3\right)^2+4}\ge\sqrt{4}=2\)

Từ đó suy ra:\(\sqrt{x^2-6x+10}+\sqrt{2x^2-12x+22}\ge1+2=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)

Thử lại với x=3 thì pt thỏa mãn

Vậy pt có nghiệm duy nhất là x=3

Khách vãng lai đã xóa
Lê Thị Mai
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 10:15

\(\Leftrightarrow\sqrt{\left(x-3\right)^2+1}=1-2\left(x-3\right)^2\)

Do \(\left(x-3\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT=\sqrt{\left(x-3\right)^2+1}\ge1\\VP=1-\left(x-3\right)^2\le1\end{matrix}\right.\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
阮芳草
Xem chi tiết
Diệu Anh
27 tháng 9 2018 lúc 18:23

Tên Trung Quốc cơ á

Bui Huyen
23 tháng 9 2019 lúc 21:54

\(\sqrt{2\left(x-3\right)^2+16}\ge4\)

\(\sqrt{4\left(x-3\right)^2+4}\ge2\)

\(\Rightarrow VT\ge6\)

mà \(-x^2+6x-3=-\left(x-3\right)^2+6\le6\)

MÀ VT=VP\(\Rightarrow x=3\)

Vũ Đức
23 tháng 9 2019 lúc 21:58

Bạn có thể lên đây để biết thêm chi tiết:

https://olm.vn/hoi-dap/detail/226308772808.html

Đạm Đoàn
Xem chi tiết
shunnokeshi
Xem chi tiết
Tran Le Khanh Linh
22 tháng 9 2020 lúc 20:41

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

Khách vãng lai đã xóa
Tran Le Khanh Linh
22 tháng 9 2020 lúc 20:43

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

Khách vãng lai đã xóa
thiyy
Xem chi tiết
Trần Vũ Minh Huy
6 tháng 10 2023 lúc 22:30

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

Akai Haruma
7 tháng 10 2023 lúc 19:11

Lời giải:

a. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-3\sqrt{x-3}=0$

$\Leftrightarrow \sqrt{x-3}(\sqrt{x+3}-3)=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}-3=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}=3$

$\Leftrightarrow x=3$ hoặc $x=6$ (tm)

b.

PT \(\Rightarrow \left\{\begin{matrix} x-3\geq 0\\ 4x^2-12x+9=(x-3)^2=x^2-6x+9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x(x-2)=0\end{matrix}\right.\)

$\Rightarrow$ không có giá trị $x$ nào thỏa mãn 

Vậy pt vô nghiệm.

c.

PT \(\Rightarrow \left\{\begin{matrix} 3x-1\geq 0\\ x^2+6x+9=(3x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ x^2+6x+9=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 8x^2-12x-8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 4(x-2)(2x+1)=0\end{matrix}\right.\Leftrightarrow x=2\)

Trúc Nguyễn
Xem chi tiết
Liên Phạm
7 tháng 1 2021 lúc 11:06

a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

=>\(17\sqrt{3x}=17\)

=>\(\sqrt{3x}=1\)

=>\(x=\dfrac{1}{3}\)

Liên Phạm
7 tháng 1 2021 lúc 11:16

b.Ta có:\(\sqrt{x^2-6x+9}=1\)

 

=>\(\sqrt{\left(x-3\right)^2}=1\)

=>\(\left|x-3\right|=1\)

Vậy có hai trường hợp:

TH1:\(x-3=1\)

=>\(x=4\)

TH2:\(x-3=-1\)

=>\(x=2\)

Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 12:59

a) ĐKXĐ: \(x\ge0\)

Ta có: \(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

\(\Leftrightarrow2\cdot2\cdot\sqrt{3x}-3\cdot\sqrt{3x}+4\cdot4\cdot\sqrt{3x}=17\)

\(\Leftrightarrow4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

\(\Leftrightarrow17\sqrt{3x}=17\)

\(\Leftrightarrow\sqrt{3x}=1\)

\(\Leftrightarrow3x=1\)

hay \(x=\dfrac{1}{3}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{3}\right\}\)

b) ĐKXĐ: \(x\in R\)

Ta có: \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Vậy: S={2;4}

CandyK
Xem chi tiết