Bài 1. a) \(\frac{4x+1}{3x}+\frac{2x-3}{6x}\)
b)\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
1, Thực hiện tính cộng, trừ, nhân, chia các phân thức sau:
a,\(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b,\(\frac{2x+3}{4x^2y^2}:\frac{6x+9}{10x^2y}\)
c,\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
d,\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)
\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)
\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)
\(=\frac{2x-7-5+3x}{10x-4}\)
\(=\frac{5x-12}{10x-4}\)
Tính
a) \(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)\)
b) \(\frac{x^3-3x^2+2x}{3x^2-4x+1}.\left(\frac{x-1}{x}-\frac{2x-6}{x-1}+\frac{x+1}{x-2}\right)\)
c) \(\frac{3x-3y}{2x^2-2xy+2y^2}:\frac{6x^2-12xy+6y^2}{5x^3+5y^3}:\frac{5x}{x-y}\)
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
Bài 1 Tìm x,y biết:
a,x+y=2(y-x)=\(3\frac{x}{y}\) (y khác 0)
b,\(\frac{5-3x}{7-2x}\)=\(\frac{6x-4}{1+4x}\)
c,|2x+1|-5(3-2x)=2
6,Thực hiện phép tính
1,\(\frac{2a^3-2b^3}{3a+3b}.\frac{6a+6b}{a^2-2ab+b^2}\)
2,\(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}\)
3,\(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}\)
4,\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
5,\(\frac{5x-15}{4x+4}:\frac{x^2-9}{x^2+2x+1}\)
6,\(\frac{6x+48}{7x-7}:\frac{x^2-64}{x^2-2x+1}\)
thực hiện các phép tính sau
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
d) \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)
\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)
\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)
c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)
\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)
d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)
\(=\frac{3-12x^2}{-2x^2-4x+16}\)
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)
\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
7,Thực hiện phép tính
a,\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
b,\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
c,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{1}{2}\)
d,\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
f,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
a, \(\frac{4x+1}{2}-\frac{3x+2}{3}=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{12x+3-6x-4}{6}=\frac{6x-1}{6}\)
b, \(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}=\frac{x+3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1}{x\left(x-1\right)}\)
\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
\(=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{6x-1}{6}\)
tương tự đến hết nha a hay cj gì đps !
a) \(\frac{4.x+1}{2}-\frac{3.x+2}{3}=\frac{3.\left(4.x+1\right)-2.\left(3.x+2\right)}{6}\)
\(=\frac{12.x+3-6.x-4}{6}\)
\(=\frac{6.x-1}{6}\)
b)\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
\(=\frac{x+3}{\left(x-1\right).\left(x+1\right)}-\frac{1}{x.\left(x+1\right)}\)
\(=\frac{x.\left(x+3\right)-\left(x-1\right)}{x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{x^2+3.x-x+1}{x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{x^2+2.x+1}{x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{x+1}{x.\left(x-1\right)}\)
\(=\frac{x+1}{x^2-x}\)
c)\(\frac{3}{2.x^2+2.x}+\frac{2.x-1}{x^2-1}-\frac{1}{2}\)
\(=\frac{3}{2.x.\left(x+1\right)}+\frac{2.x-1}{\left(x-1\right).\left(x+1\right)}-\frac{1}{2}\)
\(=\frac{3.\left(x-1\right)+2.x.\left(2.x-1\right)-x.\left(x-1\right).\left(x+1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{3.x-3+4.x^2-2.x-x.\left(x^2-1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{3.x-3+4.x^2-2.x-x^3+x}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{2.x-3+4.x^2-x^3}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{-x^3+4.x^2+2.x-3}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{-x^3-x^2+5.x^2+5.x-3.x-3}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{-x^2.\left(x+1\right)+5.x.\left(x+1\right)-3.\left(x+1\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{-\left(x+1\right).\left(x^2-5.x+3\right)}{2.x.\left(x-1\right).\left(x+1\right)}\)
\(=\frac{-\left(x^2-5.x+3\right)}{2.x.\left(x-1\right)}\)
\(=-\frac{x^2-5.x+3}{2.x^2-2.x}\)
Bài 1: Tìm điều kiện xác định của phương trình:
\(a.\frac{5-x}{x^2+6x+9}=\frac{3x+2}{x^2+6x+8}\)
\(b.\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1}\)
Bài 2: Giải phương trình:
\(a.\frac{15x-10}{x^2+3}=0\)
\(b.\frac{x^2-4x-5}{x-5}=0\)
\(c.\frac{3x-1}{x-1}-\frac{2x+5}{x+3}-\frac{8}{x^2+2x-3}=0\)