\(\left(x+9\right)\left(y+1\right)=12\sqrt{xy}\)
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
\(\left\{{}\begin{matrix}x^3+y^3=xy\sqrt{2\left(x^2+y^2\right)}\\4\sqrt{x\sqrt{x^2-1}}=9\left(y-1\right)\sqrt{2\left(x-1\right)}\end{matrix}\right.\)
Hệ này ko giải được, ngoại trừ nghiệm \(x=1\) ; \(y=\pm\sqrt{1+\sqrt{3}}\) ra thì còn 1 nghiệm ko thể tìm được trong chương trình phổ thông (nó là nghiệm xấu của pt bậc 5)
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\\y^2+xy-5x+7=0\end{matrix}\right.\)
Đk: \(\left\{{}\begin{matrix}y\ge0\\x>1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\left(1\right)\\y^2+xy-5x+7=0\left(2\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{\left(x-1\right)y}\left(a\ge0\right)\\b=\sqrt{\dfrac{y}{x-1}}\left(b\ge0\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow3a=ab\left(2+b\right)\)
Với \(a=0\Rightarrow\sqrt{\left(x-1\right)y}=0\Rightarrow y=0\) (vì \(x\ne1\)).
Thay \(y=0\) vào (2) ta được:
\(2^2+x.2-5x+7=0\)
\(\Leftrightarrow x=\dfrac{11}{3}\left(nhận\right)\)
Với \(a\ne0\Rightarrow3=b\left(2+b\right)\)
\(\Leftrightarrow b^2+2b-3=0\)
\(\Leftrightarrow b^2-b+3b-3=0\)
\(\Leftrightarrow b\left(b-1\right)+3\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=1\left(nhận\right)\\b=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{y}{x-1}}=1\Rightarrow x=y+1\)
Thay vào (2) ta được:
\(y^2+\left(y+1\right)y-5\left(y+1\right)+7=0\)
\(\Leftrightarrow y^2+y^2+y-5y-5+7=0\)
\(\Leftrightarrow2y^2-4y+2=0\)
\(\Leftrightarrow2\left(y-1\right)^2=0\)
\(\Leftrightarrow y=1\Rightarrow x=1+1=2\)
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{11}{3};0\right),\left(2;1\right)\right\}\)
\(\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{y}-1\right)=\sqrt{xy}\\\left(\sqrt{x}-1\right)\left(\sqrt{y}+3\right)=\sqrt{xy}\end{matrix}\right.\)
ĐKXĐ: \(x\ge0;y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{xy}-\sqrt{x}+\sqrt{y}-1=\sqrt{xy}\\\sqrt{xy}+3\sqrt{x}-\sqrt{y}-3=\sqrt{xy}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}+\sqrt{y}=1\\3\sqrt{x}-\sqrt{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}=4\\3\sqrt{x}-\sqrt{y}=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\sqrt{y}=3\sqrt{x}-3=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=9\end{matrix}\right.\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)
\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)
Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)
\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)
Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)
Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)
Vậy \(M=-20\sqrt{2}\)
theo bài ra
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)
\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)
\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)
\(x^3=4\sqrt{2}-3.1x\)
\(x^3=4\sqrt{2}-3x\)
\(< =>x^3+3x-4\sqrt{2}=0\)
rồi làm y tương tự rồi thế vào M là ra
1\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x^3y^3+7\left(x+1\right)\left(y+1\right)=31\end{matrix}\right.\)
2 giải pt \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)
2.
ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)
\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)
\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)
\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)
\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)
\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1