Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh
Xem chi tiết
Nguyễn Thị Anh
6 tháng 8 2016 lúc 22:21

bạn đăng 1 lúc nhiều v

k ai dám làm đâu

Lizy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 lúc 20:08

Hệ này ko giải được, ngoại trừ nghiệm \(x=1\) ; \(y=\pm\sqrt{1+\sqrt{3}}\) ra thì còn 1 nghiệm ko thể tìm được trong chương trình phổ thông (nó là nghiệm xấu của pt bậc 5)

Tiến Nguyễn Minh
Xem chi tiết
Mỹ Lệ
Xem chi tiết
Hi Mn
Xem chi tiết
Trần Tuấn Hoàng
1 tháng 1 2023 lúc 11:25

Đk: \(\left\{{}\begin{matrix}y\ge0\\x>1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\sqrt{9\left(x-1\right)y}=y\left(2+\sqrt{\dfrac{y}{x-1}}\right)\left(1\right)\\y^2+xy-5x+7=0\left(2\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{\left(x-1\right)y}\left(a\ge0\right)\\b=\sqrt{\dfrac{y}{x-1}}\left(b\ge0\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow3a=ab\left(2+b\right)\)

Với \(a=0\Rightarrow\sqrt{\left(x-1\right)y}=0\Rightarrow y=0\) (vì \(x\ne1\)).

Thay \(y=0\) vào (2) ta được:

\(2^2+x.2-5x+7=0\)

\(\Leftrightarrow x=\dfrac{11}{3}\left(nhận\right)\)

Với \(a\ne0\Rightarrow3=b\left(2+b\right)\)

\(\Leftrightarrow b^2+2b-3=0\)

\(\Leftrightarrow b^2-b+3b-3=0\)

\(\Leftrightarrow b\left(b-1\right)+3\left(b-1\right)=0\)

\(\Leftrightarrow\left(b-1\right)\left(b+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=1\left(nhận\right)\\b=-3\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\dfrac{y}{x-1}}=1\Rightarrow x=y+1\)

Thay vào (2) ta được:

\(y^2+\left(y+1\right)y-5\left(y+1\right)+7=0\)

\(\Leftrightarrow y^2+y^2+y-5y-5+7=0\)

\(\Leftrightarrow2y^2-4y+2=0\)

\(\Leftrightarrow2\left(y-1\right)^2=0\)

\(\Leftrightarrow y=1\Rightarrow x=1+1=2\)

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{11}{3};0\right),\left(2;1\right)\right\}\)

ttl169
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2022 lúc 14:51

ĐKXĐ: \(x\ge0;y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{xy}-\sqrt{x}+\sqrt{y}-1=\sqrt{xy}\\\sqrt{xy}+3\sqrt{x}-\sqrt{y}-3=\sqrt{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}+\sqrt{y}=1\\3\sqrt{x}-\sqrt{y}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x}=4\\3\sqrt{x}-\sqrt{y}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\sqrt{y}=3\sqrt{x}-3=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=9\end{matrix}\right.\)

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 15:37

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

missing you =
18 tháng 6 2021 lúc 15:42

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra

 

Phạm Duy Phát
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 15:55

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

Nguyễn Việt Lâm
26 tháng 2 2021 lúc 15:59

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

Dark Killer
Xem chi tiết