Cho \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cmr \(\frac{a}{b}=\frac{c}{d}\)
Help me!!
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
CMR: a = b = c
Help me !!!
bạn xem mấy câu hỏi tương tự nhé
có mấy câu giống hệt bạn đấy đừng đăng mấy câu trùng
bài này phải sửa d thành a nhé
Ap dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\Rightarrow a=b=c\) (đpcm)
Bài: Cho a,b,c,d >0. Chứng minh:
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
Help me!!!
áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
Cho tỉ lệ thức \(\frac{a}{b}\) = \(\frac{c}{d}\), CMR ta có tỉ lệ thức \(\frac{a-b}{b}\)=\(\frac{c-d}{b}\)
Help me! Giải nhanh hộ mik vs!
đặt a/b=c/d là k
suy ra a=k.b ,c=d.k
Suy ra a-b/b=k.b-b/b=b.(k-1)/b=k-1
c-d/d=k.d-d/d=d.(k-1)/d=k-1
từ đó suy ra a-b/b=c-d/d
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)\(\Rightarrow\)a=bk ; c=dk
xét : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)(1)
xét : \(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)(2)
từ 1,2 \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
bn ơi mk nghĩ là bn vik nhầm đề rồi
mk chỉ bik lm vs đề này thôi
Cho tỉ lệ thức \(\frac{a}{b}\) =\(\frac{c}{d}\)CMR ta có tỉ lệ thức \(\frac{a-b}{b}\)= \(\frac{c-d}{b}\)
Help me! Giải nhanh hộ mik vs!
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Câu 1:Cho dãy tỉ số:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\).
Tính: M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2:S= abc+bca+cab (abc, bca, cab là các số hạng)
Chứng minh: S không phải là số chính phương.
Câu 3: Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR: Ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20o.
Help me- Mai mình nộp rồi!
mỗi tỉ số đã cho đều bớt đi 1 ta được :
\(\frac{2a+b+c+d}{a}\) - 1 = \(\frac{a+2b+c+d}{b}\) - 1 = \(\frac{a+b+2c+d}{c}\) - 1 = \(\frac{a+b+c+2d}{d}\) - 1
\(\frac{a+b+c+d}{a}\) = \(\frac{a+b+c+d}{b}\) = \(\frac{a+b+c+d}{c}\) = \(\frac{a+b+c+d}{d}\)
- Nếu a+b+c+d \(\ne\) 0 thì a = b = c =d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 thì a + b = - ( c + d ) ; b + c = - ( d + a )
c + d = - ( a + b ) ; d + a = - ( b + c )
Lúc đó : M= (-1 ) + (-1) + (-1) + (-1) = -4
Lấy 1 điểm O tùy ý , Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung , mỗi góc này tương ứng bằng góc giữa 2 đường thẳng tronh số 9 đường thẳng đã cho . Tổng số đo của 18 góc đỉnh O là 360 độ do đó ít nhất có một góc nhỏ hơn 360 : 18 = 20 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20 độ
Câu 2
S = ( 100a + 10b + c ) + ( 100b + 10c + a ) + (100c + 10a + b )
S = 111(a+b+c) = 37.3 (a+b+c)
Vì 0 < a + b + c \(\le\) 27 nên a + b + c \(⋮̸\) 37
Mặt khác (3;37) = 1 nên 3 ( a+b+c) \(⋮̸\) 37
Suy ra S không thể là số chính phương
\(\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) ( Đúng với gt)
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Cho a, b, c, d là các số thực dương. CMR :
a) \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
b) \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)