Câu 1:Cho dãy tỉ số:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\).
Tính: M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2:S= abc+bca+cab (abc, bca, cab là các số hạng)
Chứng minh: S không phải là số chính phương.
Câu 3: Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR: Ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20o.
Help me- Mai mình nộp rồi!
mỗi tỉ số đã cho đều bớt đi 1 ta được :
\(\frac{2a+b+c+d}{a}\) - 1 = \(\frac{a+2b+c+d}{b}\) - 1 = \(\frac{a+b+2c+d}{c}\) - 1 = \(\frac{a+b+c+2d}{d}\) - 1
\(\frac{a+b+c+d}{a}\) = \(\frac{a+b+c+d}{b}\) = \(\frac{a+b+c+d}{c}\) = \(\frac{a+b+c+d}{d}\)
- Nếu a+b+c+d \(\ne\) 0 thì a = b = c =d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 thì a + b = - ( c + d ) ; b + c = - ( d + a )
c + d = - ( a + b ) ; d + a = - ( b + c )
Lúc đó : M= (-1 ) + (-1) + (-1) + (-1) = -4
Lấy 1 điểm O tùy ý , Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung , mỗi góc này tương ứng bằng góc giữa 2 đường thẳng tronh số 9 đường thẳng đã cho . Tổng số đo của 18 góc đỉnh O là 360 độ do đó ít nhất có một góc nhỏ hơn 360 : 18 = 20 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20 độ
Câu 2
S = ( 100a + 10b + c ) + ( 100b + 10c + a ) + (100c + 10a + b )
S = 111(a+b+c) = 37.3 (a+b+c)
Vì 0 < a + b + c \(\le\) 27 nên a + b + c \(⋮̸\) 37
Mặt khác (3;37) = 1 nên 3 ( a+b+c) \(⋮̸\) 37
Suy ra S không thể là số chính phương
câu 1
mình làm trong đây nha /hoi-dap/question/56170.html
2. S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
3.Lấy điểm O tuỳ ý.Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho. Tổng số đo của 18 góc đỉnh O là \(^{360^0}\) do đó ít nhất có 1 góc không nhỏ hơn \(^{360^0}\) : 18 = \(^{20^0}\) , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn \(^{20^0}\)