Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)
mà \(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c
\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)
từ đó được \(a^n=-b^n\)với mọi n lẻ.
Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)
Từ (1)và(2) ta được đpcm