tìm x
a /x/=+0,573=2
b/x+1 phần 3 / -4=-2
Tìm x
a) x + 2/5 = 1/2
b) x + 3/7 = 2/5 + 3/10
c) 19 - x = 8/5 - 3/4
\(a,x=\dfrac{1}{2}-\dfrac{2}{5}\)
\(x=\dfrac{1}{10}\)
\(b,x+\dfrac{3}{7}=\dfrac{7}{10}\)
\(x=\dfrac{7}{10}-\dfrac{3}{7}\)
\(x=\dfrac{19}{70}\)
\(c,19-x=\dfrac{17}{20}\)
\(x=19-\dfrac{17}{20}\)
\(x=\dfrac{363}{20}\)
1.Tìm x
a, x ː 2,2 = (28,7 - 13,5 ). 2
b, (3 3/4 . x +75%) ː 2/3 = -1
c, 4x - ( 3 + 5x ) = 14
a: =>x:2,2=15,2x2=30,4
=>x=66,88
b: =>(15/4x+3/4)=-2/3
=>15/4x=-17/12
hay x=-17/45
tìm x:
a) |x| = 2,5 b) |x| = -1,2
c) |x| + 0,573 = 2 d) \(\left|x+\frac{1}{3}\right|\) - 4 = -1
a) |x| = 2,5
=>\(\left[\begin{array}{nghiempt}x=2,5\\x=-2,5\end{array}\right.\)
vậy x=2,5 hoặc x=-2,5
b)|x|=-1,2
=>x không có giá trị thỏa mãn |x|\(\ge\) 0
c)|x| + 0,573 = 2
|x| = 2 - 0,573
|x| = 1,427
=>\(\left[\begin{array}{nghiempt}x=1,427\\x=-1,427\end{array}\right.\)
Vậy x = 1,427 hoặc x = -1,427
d) ∣∣x+13∣∣ - 4 = -1
=>|x+\(\frac{1}{3}\)| =-1 + 4
|x+\(\frac{1}{3}\)| = 3
.....................
Vậy x = \(\frac{8}{3}\) hoặc x = \(\frac{-10}{3}\)
a ) \(\left|x\right|=2,5\Rightarrow x=2,5;x=-2,5\)
b ) \(\left|x\right|=-1,2\Rightarrow\left|x\right|\ge0\forall x\Rightarrow x\in\varnothing\)
c ) \(\left|x\right|+0,573=2\)
\(\Rightarrow\)\(\left[\begin{array}{nghiempt}x+0,573=2\\x+0,573=-2\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2-0,573\\\left(-2\right)-0,573\end{array}\right.\) \(\Rightarrow\)\(\left[\begin{array}{nghiempt}x=1,427\\x=-2,573\end{array}\right.\)
Vậy \(x\in1,427;-2,573\)
d ) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=3-\frac{1}{3}\\x=\left(-3\right)-\frac{1}{3}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{8}{3}\\x=\frac{-10}{3}\end{array}\right.\)
Vậy \(x\in\frac{8}{3};\frac{-10}{3}\)
(Gíup mình với các thần đồng 's hoc24 ơi)
bài 101 /x/ = 2,5 b)/x/ = -1,2 c)/x/ + 0,573 = 2 d,/x+1/3 / -4 = -1.
a) \(\left|x\right|=2,5\Rightarrow\)\(\left[{}\begin{matrix}x=2,5\\x=-2,5\end{matrix}\right.\)
b) \(\left|x\right|=-1,2\left(VLý\right)\Rightarrow S=\varnothing\)
c) \(\left|x\right|+0,573=2\Rightarrow\left|x\right|=1,427\)
\(\Rightarrow\left[{}\begin{matrix}x=1,427\\x=-1,427\end{matrix}\right.\)
d) \(\left|x+\dfrac{1}{3}\right|-4=-1\Rightarrow\left|x+\dfrac{1}{3}\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{100}{3}\end{matrix}\right.\)
Tìm x
a) -3 1/2 : (4/5-1/2x) = 2^2
b) 2x + 3x = 5
c) -2/3x - 1/3x = -2
d) -2/3 (x+1) - 1/2 = -1/3
a: =>-7/2:(4/5-1/2x)=4
=>4/5-1/2x=-7/2:4=-7/8
=>1/2x=4/5+7/8=67/40
=>x=67/20
b: =>5x=5
=>x=1
c: =>x(-2/3-1/3)=-2
=>-x=-2
=>x=2
d: =>-2/3(x+1)=-1/3+1/2=1/6
=>x+1=-1/6:2/3=-1/6*3/2=-3/12=-1/4
=>x=-1/4-1=-5/4
\(\dfrac{x}{-15}\) = \(\dfrac{-60}{x}\)
\(|x|+0,573=2\)
\(|x+\dfrac{1}{3}|-4=-1\)
0,01 : 2,5 =(0,75x) : 0,75
a) Ta có: \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
\(\Leftrightarrow x^2=\left(-15\right)\cdot\left(-60\right)=900\)
hay \(x\in\left\{30;-30\right\}\)
Vậy: \(x\in\left\{30;-30\right\}\)
b) Ta có: \(\left|x\right|+0.573=2\)
\(\Leftrightarrow\left|x\right|=1.427\)
hay \(x\in\left\{1.427;-1.427\right\}\)
Vậy: \(x\in\left\{1.427;-1.427\right\}\)
c) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{8}{3};-\dfrac{10}{3}\right\}\)
d) Ta có: \(0.01:2.5=\left(0.75x\right):0.75\)
\(\Leftrightarrow\dfrac{0.75\cdot x}{0.75}=\dfrac{0.01}{2.5}\)
\(\Leftrightarrow x=\dfrac{1}{250}\)
Vậy: \(x=\dfrac{1}{250}\)
Bài 1: Tìm x
a/\(\sqrt{1-4x+4x^2}\)+5=x-2
b/\(3\sqrt{12+4x}\)+\(\dfrac{4}{7}\sqrt{147+49x}\)=\(\dfrac{3}{2}\sqrt{48+16x}\)+4
`a)sqrt{1-4x+4x^2}+5=x-2`
`<=>\sqrt{(2x-1)^2}=x-2-5`
`<=>|2x-1|=x-7(x>=7)`
`<=>[(2x-1=x-7),(2x-1=7-x):}`
`<=>[(x=-6(ktm)),(3x=8):}`
`<=>x=8/3(ktm)`
Vậy PTVN
`b)3sqrt{12+4x}+4/7sqrt{147+49x}=3/2sqrt{48+16x}+4(x>=-3)`
`<=>6sqrt{x+3}+4sqrt{x+3}=6sqrt{x+3}+4`
`<=>4sqrt{x+3}=4`
`<=>sqrt{x+3}=1<=>x+3=1`
`<=>x=-2(tm)`
Vậy `S={-2}`
a) \(\sqrt{1-4x+4x^2}+5=x-2\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\Leftrightarrow\left|1-2x\right|=x-7\left(1\right)\)TH1: \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow1-2x=x-7\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)(không thỏa đk)
TH2: \(1-2x< 0\Leftrightarrow x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2x-1=x-7\Leftrightarrow x=-6\)(không thỏa đk)
Vậy \(S=\varnothing\)
b) \(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}=6\sqrt{3+x}+4\Leftrightarrow4\sqrt{3+x}=4\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\)
a. \(\sqrt{1-4x+4x^2}+5=x-2\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\)
\(\Leftrightarrow\left|1-2x\right|-x=-7\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x-x=-7\\2x-1-x=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\x=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-6\end{matrix}\right.\)
b. ĐKXĐ: \(x\ge-3\)
\(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\)
\(\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}-6\sqrt{3+x}=4\)
\(\Leftrightarrow4\sqrt{3+x}=4\) \(\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\) ( thỏa mãn đk )
tìm x biết :
a)/x/=2,5
b)/x/=-1,2
c)/x/+0,573=2
d)/\(x+\frac{1}{3}\)/ -4=-1
a) vì /x/>= 0 => x = { 2,5 ; -2,5 }
b) ko tìm đươc x thỏa mãn vì /x/ >= 0
c) /x/ = 2 + 0,573
<=> /x/ = 2,573
<=> x = { 2,573 ; -2,573 }
d) /x+ 1/3 / = -1+(-4 )
<=> /x+1/3 /= -5
vì /x+1/3 / luôn lớn hơn hoặc bằng 0 => ko tìm được x thỏa mãn
tìm x . biết
a) |x | = 2,5
b) |x| = - 1, 2
c) |x| + 0,573 = 2
d) |x + \(\frac{1}{3}\)| -4 = -1
a. |x| = 2,5
=> \(x\in\left\{-2,5;2,5\right\}\).
b. |x| = -1,2
Mà |x| > 0 ( theo lí thuyết )
Vậy không tồn tại x thỏa mãn.
c. |x|+0,573=2
=> |x|=2-0,573
=> |x|=1,427
=> \(x\in\left\{-1,427;1,427\right\}\).
d. |x+1/3|-4=-1
=> |x+1/3|=-1+4
=> |x+1/3|=3
+) x+1/3=3
=> x=3-1/3
=> x=8/3
+) x+1/3=-3
=> x=-3-1/3
=> x=-10/3
Vậy \(x\in\left\{-\frac{10}{3};\frac{8}{3}\right\}\).