tìm x, y, z biết
4x(x-1)+\(3\sqrt{2}\)(1-x)=0
tìm x, y, z biết
4x(x-1)+\(3\sqrt{2}\) (1-x) =0
\(4x\left(x-1\right)+3\sqrt{2}\left(x-1\right)=0\)
\(\Rightarrow\left(4x+3\sqrt{2}\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x+3\sqrt{2}=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=-3\sqrt{2}\Rightarrow x=\frac{-3\sqrt{2}}{4}\\x=1\end{cases}}\)
Vậy ....
Chắc sai =))
\(4x\left(x-1\right)+3\sqrt{2}\left(1-x\right)=0\)
\(\Leftrightarrow4x^2-4x+3\sqrt{2}-3\sqrt{2}x=0\)
\(\Leftrightarrow4x^2-\left(4+3\sqrt{x}\right)x+3\sqrt{2}=0\)
Ta có: \(\Delta=\left(4+\sqrt{3}\right)^2-4.4.3\sqrt{2}=34-24\sqrt{2}\)
Vậy pt có 2 nghiệm:
\(x_1=\frac{4+3\sqrt{2}+34-24\sqrt{2}}{8}=\frac{38-21\sqrt{2}}{8}\)
\(x_2=\frac{4+3\sqrt{2}-34+24\sqrt{2}}{8}=\frac{-30+27\sqrt{2}}{8}\)
Làm ko kiểm lại, )):
\(4x\left(x-1\right)+3\sqrt{2}\left(1-x\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)-3\sqrt{2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x-3\sqrt{2}\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3\sqrt{2}=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{2}}{4}\\x=1\end{cases}}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
Bài 1 : Tìm GTNN của biểu thức : \(A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\)
Bài 2 : Tìm x biết :
a, \(\sqrt{x}< \sqrt{x+1}\)
b, \(\sqrt{x-1}>4\)
c, \(\sqrt{4x^2+4x+1}+\sqrt{2x-1}=0\)
Bài 3 Tìm x,y thuộc Z
a, \(x^2+4x-y=1\)
b, \(x^2-3xy+2y^2+6=0\)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
2c.
\(DK:x\ge\frac{1}{2}\)
\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)
\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)
Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vay PT vo nghiem
Tìm max
\(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\left(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\right)\)
\(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\left(x,y,z>0\right)\)
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
giải phương trình
a) \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
b) \(2x-8\sqrt{2x-3}+9=0\)
c)\(\sqrt{x-2}+\sqrt{y+2000}+\sqrt{z-2001}=\frac{1}{2}\left(x+y+z\right)\)
d) \(x+y+z+23=4\sqrt{x-1}+6\sqrt{y-2}+8\sqrt{z-3}\)
e)\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
b/ \(2x-8\sqrt{2x-3}+9=0\)
\(\Leftrightarrow\left(2x-3-2.4.\sqrt{2x-3}+16\right)-4=0\)
\(\Leftrightarrow\left(4-\sqrt{2x-3}\right)^2-4=\)
\(\Leftrightarrow\left(2-\sqrt{2x-3}\right)\left(6-\sqrt{2x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2=\sqrt{2x-3}\\6=\sqrt{2x-3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{39}{2}\end{cases}}}\)
Tim x, y, z
1/ \(\sqrt{x-2}+\sqrt{y-2008}+\sqrt{z-2009}=\dfrac{1}{2}\left(x+y+z\right)\)
2/ \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{x-5}\)
3/ Tinh T = \(x^2+y^2+z^2-7\) biet x-y-z = \(2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)
4/ \(2x^2+9y^2-6xy-12y-6x+29=0\)
5/\(4x^2+3y-4x+4xy-10y+9=0\)
Bài 1: Tìm số x,y,z biết x + y + z + 11 = 2\(\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)
Bài 2: Tìm GTNN Q= \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Bài 3: Tìm GTLN P = \(\sqrt{x-2}+\sqrt{x-3}\) biết x+y = 6
Bài 1: \(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)
ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\cdot\sqrt{y-1}\cdot2+4+\left(z-2\right)-2\cdot\sqrt{z-2}\cdot3+9=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+\left(\sqrt{z-2}-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=2\\\sqrt{z-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)
Bài 2:
Q=|x+2|+|x-2|>=|x+2+2-x|=4
Dấu = xảy ra khi (x+2)(x-2)<=0
=>-2<=x<=2
cho x,y,z >0 thỏa mãn x+y+z=0. Tìm GTLN của\(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
Các biểu thức ở trong căn đều đưa được về bình phương
\(\sqrt{4x+2\sqrt{x}+1}=\sqrt{\left(2\sqrt{x}+1\right)^2}=\left|2\sqrt{x}+1\right|=2\sqrt{x}+1\)
Tương tự với hai căn còn lại ta sẽ có biểu thức đề cho tương đương với
\(2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\)