Phân tích đa thức thành nhân tử:
\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
Phân tích đa thức thành nhân tử
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\)
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\)
\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)
\(\Rightarrow a+2b=\left(x+y+z\right)^2\)
Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
phân tích đa thức thành nhân tử
a.\(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
b.\(x^2+y^2-x^2y^2+xy-x-y\)
phân tích đa thức thành nhân tử:
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+xz\right)^2\)
Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b
=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b
Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2
= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2
=(x^2+y^2+z^2 +xy+yz+zx)^2
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
Phân tích đa thức thành nhân tử
\(mn\left(x^2+y^2\right)+xy\left(m^2+n^2\right)\)
Phân tích thành nhân tử
\(=\left(my+nx\right)\left(ny+mx\right)\)
mn(x2 +y2) +xy(m2 +n2)= mnx2 +mny2 +xym2 +xyn2
=mx(nx + my) +ny( my +nx)
=(mx+ny)(nx+my)
bài 11 phân tích đa thức thành nhân tử
a,\(x^2-xy+x\) b,\(x^2-2xy-4+y^2\) c,\(x^3-x^2-16x+16\)
bài 12 tìm x biết :
a,\(2x\left(x-5\right)-x\left(3+2x\right)=26\) b,\(2\left(x+5\right)-x^2-5x=0\)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
phân tích đa thức thành nhân tử
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)
\(=\left(xy-y^2+xy\right)\left(x-y\right)\)
\(=\left(2xy-y^2\right)\left(x-y\right)\)
y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]
= (x-y) ( 2xy -y2)
Phân tích đa thức thành nhân tử
\(a,2x^2-xy+4x-2y\)
\(b,\left(a^2-a+2012\right)\left(a^2-a+2014\right)-3\)
a) 2x² - xy + 4x - 2y
<=> (2x² + 4x)-(xy + 2y)
<=> 2x(x + 2) - y(x + 2)
<=> (x + 2)(2x - y)
b) (a²−a+2012)(a²−a+2014)−3
Đặt a²−a+2012 là x , ta có :
x(x + 2) - 3
<=> x² + 2x - 3
<=> x² + 3x - x - 3
<=> x(x + 3) - (x + 3)
<=> (x +3)(x - 1)
Thay x = a²−a+2012 , ta được :
(a²−a+2015)(a²−a+2011)
phân tích đa thức sau thành nhân tử dựa vào phương pháp nhóm hạng tử :
a) \(x^4+25x^2+20x-4\)
b)\(x^2\left(x^2-6\right)-x^2+9\)
c)\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)
a: \(x^4+25x^2+20x-4\)
\(=x^4-5x^3+2x^2+5x^3-25x^2+10x-2x^2+10x-4\)
\(=x^2\left(x^2-5x+2\right)+5x\left(x^2-5x+2\right)-2\left(x^2-5x+2\right)\)
\(=\left(x^2-5x+2\right)\left(x^2+5x-2\right)\)
b: \(=x^4-6x^2-x^2+9\)
\(=\left(x^2-3\right)^2-x^2\)
\(=\left(x^2-x-3\right)\left(x^2+x-3\right)\)
c: \(=abx^2+aby^2-a^2xy-b^2xy\)
\(=\left(abx^2-b^2xy\right)+\left(aby^2-a^2xy\right)\)
\(=xb\left(ax-by\right)+ay\left(by-ax\right)\)
\(=\left(ax-by\right)\cdot\left(xb-ay\right)\)