= abx2 + aby2 + xya2 +xyb2
= (abx2 + xya2) + (aby2 + xyb2)
= ax (bx + ay) + yb (ay + bx)
= (ax + yb)(bx + ay)
= abx2 + aby2 + xya2 +xyb2
= (abx2 + xya2) + (aby2 + xyb2)
= ax (bx + ay) + yb (ay + bx)
= (ax + yb)(bx + ay)
Phân tích đa thức thành nhân tử :
\(A=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Phân tích đa thức thành nhân tử: \(A=\left(a+b+c\right).\left(bc+ca+ab\right)-abc\)
Phân tích các đa thức thành nhân tử :
a ) \(g\left(x,y\right)=x^2-10xy+9y^2\). b ) \(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)
c ) \(h\left(x,y,z\right)=xz-yz-x^2+2xy-y^2\)
Phân tích các đa thức sau thành nhân tử: \(\left(x^2+2x\right)^2+9x^2+18x+20\)
Phân tích đa thức thành nhân tử
a, ab ( a - b ) + bc ( b - c ) + ca ( c - a )
b, \(\left(x+y+z\right)\left(xy+xy+zx\right)-xyz\)
c, \(xy\left(x+y\right)-zy\left(y+z\right)-zx\left(z-x\right)\)
tìm x
a, \(\left(x-1\right)^2-1+x^2-\left(1-x\right)\left(x+3\right)\)
b, \(x^6-x^5+3x^4-16x^2+16x-48\)
Phân tích các đa thức sau thành nhân tử:
a) \(yz.\left(y+z\right)+xz.\left(z-x\right)-xy.\left(x+y\right)\)
b) \(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
c) \(y.\left(x-2z\right)^2+8xyz+x.\left(y-2z\right)^2-2z.\left(x+y\right)^2\)
Bài 1:
1) Chứng minh: \(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)=x^4-y^4\)
2) Phân tích đa thức thành nhân tử: \(x\left(x+2\right)\left(x^2+2x+2\right)+1\)
3) Tìm a, b, c biết: \(a^2+b^2+c^2=ab+bc+ca\) và \(a^3+b^4+c^4=3\)
Phân tích đa thức thành nhân tử
a, \(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)
b, bc(b+c)+ca(c+a)+ba(a+b)+2abc
c,\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
b) \(a.\left(b+c\right)^2.\left(b-c\right)+b.\left(c+a\right)^2.\left(c-a\right)+c.\left(a+b\right)^2.\left(a-b\right)\)