Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Anh Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 12 2021 lúc 9:59

\(a,=\dfrac{x^2-2xy+y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\\ b,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4xy-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y}{x+y}\)

Đoàn Nguyễn
20 tháng 12 2021 lúc 10:00

a.\(\dfrac{\left(x-y\right)^2}{x^2-y^2}\)
b.

Nguyễn Đức Nam Bảo
20 tháng 12 2021 lúc 10:00

=3424,998

Thanh Sỹ
Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 23:41

a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)

b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)

c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)

\(=ax\left(x-a\right)\)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 7:20

\(ĐK:x\ne\pm y\\ A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\left(đpcm\right)\)

Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Giang Hương
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 10:08

a) Do \(\left|1+2x\right|\ge0\Rightarrow\dfrac{-1}{4}\left|1+2x\right|\le0\)

\(\Rightarrow A=2,25-\dfrac{1}{4}\left|1+2x\right|\le2,25\)

\(maxA=2,25\Leftrightarrow x=-\dfrac{1}{2}\)

b) Do \(\left|2x-3\right|\ge0\Rightarrow3+\dfrac{1}{2}\left|2x-3\right|\ge3\)

\(\Rightarrow B=\dfrac{1}{3+\dfrac{1}{2}\left|2x-3\right|}\le\dfrac{1}{3}\)

\(maxB=\dfrac{1}{3}\Leftrightarrow x=\dfrac{3}{2}\)

Giang Hương
4 tháng 9 2021 lúc 10:04

mình ghi nhầm đề bài là Tìm giá trị lớn nhất nhé

thuc quyen thái
Xem chi tiết
thuc quyen thái
18 tháng 12 2021 lúc 10:10

mình cần gấp mong các bạn giải giùm

 

Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 10:12

c: \(E=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)

ý phan
Xem chi tiết
MiRi
13 tháng 3 2022 lúc 8:51

 

a) \(A=2x^2-\dfrac{1}{3}y\)

A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)

A=\(\dfrac{5}{3}\)\(x^2y\)

Tại \(x=2;y=9\) ta có

A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60

Vậy tại \(x=2;y=9\) biểu thức A= 60

b) P=\(2x^2+3xy+y^2\)            (\(y^2\) là 1\(y^2\) nha bạn)

P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)

P= 6\(x^3y^3\)

Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có

P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)

Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)

c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)

=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)

=\(-\dfrac{1}{3}\)\(x^4y^2\)

Tại \(x=2;y=\dfrac{1}{4}\)ta có

\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)

\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)\(-\dfrac{1}{3}\)

CHÚC BẠN HỌC TỐT NHA

 

 

simp luck voltia
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 7:30

\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-1}{x-2y}\)

Thầy Đức Anh
5 tháng 1 2023 lúc 10:00

Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:

$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.

Hoàn Võ Ngọc
Xem chi tiết
BW_P&A
10 tháng 11 2017 lúc 21:49

1. Ta có: \(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{x^4\left(x^2+1\right)+x^2+1}{x-1}\)

\(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

2.Ta có: \(\dfrac{x^2+y^2+z^2-2xy+2xz-2xz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y+z\right)\left(x-y+z\right)}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)

_Chúc bạn học tốt_

Trần Quốc Lộc
11 tháng 11 2017 lúc 15:50

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{\left(x-1\right)}\\ \)

\(\text{2) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)