\(a,=\dfrac{x^2-2xy+y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\\ b,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4xy-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y}{x+y}\)
a.\(\dfrac{\left(x-y\right)^2}{x^2-y^2}\)
b.
\(a,\dfrac{x^2}{x^2-y^2}-\dfrac{2xy}{x^2-y^2}+\dfrac{y^2}{x^2-y^2}\\ =\dfrac{x^2-2xy+y^2}{x^2-y^2}\\ =\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{x-y}{x+y}\)
a,=x2−2xy+y2(x−y)(x+y)=(x−y)2(x−y)(x+y)=x−yx+yb,=x2+2xy+y2−x2+2xy−y2−4y2(x−y)(x+y)=4xy−4y2(x−y)(x+y)=4y(x−y)(x−y)(x+y)=4yx+y