Câu 1: Thu gọn các biểu thức sau: a) (3x + 4) (2x-1)+6x(1-x) b)(x - 1)(x+7) - x² + 3x
Câu 1: Thu gọn các biểu thức a) 6x²y(3xy - 2xy² + y) b) (-3x + 2) (5x² - 1 phần 3x + 4) c) ( x + 1)( x - 2) + x( 3 - x)
a: =12x^3y^2-12x^3y^3+6x^2y^2
b: =\(\left(-3x+2\right)\left(5x^2-\dfrac{1}{3}x+4\right)\)
=-15x^3+x^2-12x+10x^2-2/3x+8
=-15x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Bài 1: Rút gọn các biểu thức sau:
a, A = (x-2).(2x-1) - 2x (x+3)
b, B = (3x-2).(2x+1) - (6x-1).(x+2)
c, C = 6x.(2x+3) - (4x-1).(3x-2)
d, D = (2x+3).(5x-2)+(x+4).(2x-1) - 6x.(2x-3)
Bài 2: Chứng tỏ rằng các đa thức không phụ thuộc vào biến.
a, 2x(3x-5).(x+11) - 3x.(2x+3).(x+7)
b, (x2+5x-6).(x-1) - (x+2).(x2-x+1) - x(3x-10)
c, (x2+x+1).(x-1) - x2(x+1) + x2 - 5
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
Bài 2:
a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)
\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)
\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)
\(=-117x\)
b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)
\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)
\(=x^3+x^2-x+6-x^3-x^2+x-2\)
=4
c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)
\(=x^3-1-x^3-x^2+x^2-5\)
=-6
Thu gọn biểu thức
(6x+1)(2x-5)
(2x+5)2-2x(2x+8)
(3x-5)(2x-1)-(2x+3)(3x+7)+30x
(X-1)2-(x+1)(x-1)
(3x+2)(9x2-6x+4)-(3+x)(x-3)
(6x+1)(2x-5)=12x2-30x+2x-5=12x2-28x-5
(2x+5)2-2x(2x+8)=4x2+20x+25-4x2-16x=4x+25
(3x-5)(2x-1)-(2x+3)(3x+7)+30x=6x2-3x-10x+5=6x2-13x+5
(X-1)2-(x+1)(x-1)=x2-2x+1-x2+1=-2x+2
(3x+2)(9x2-6x+4)-(3+x)(x-3)=27x3+8+9-x2=27x3-x2+17
3A. Rút gọn các biểu thức sau: a) 5x ^ 2 * (3x ^ 2 - 1) - 6x(4x ^ 3 - 3x + 1) - 2x ^ 3 * (3x - 1) b) 1/2 * x(x ^ 2 - 2/5 * x + 2) - 3/4 * x ^ 2 * (x + 1/3) - x(x + 1) c) 1 1/2 * x ^ 2 * (x ^ 2 - 2x) - 2x(x ^ 3 + x ^ 2 + 1) + 2(x - 1) d) x(x ^ 3 - 2x ^ 2) + 5x(x ^ 2 - 2x + 1/2) - x ^ 2 * (x ^ 2 - x + 1) . Rút gọn các biểu thức sau: 3B a) 3x(- x ^ 2 - 5) + 5x(x ^ 3 + 7) - 3x ^ 2 * (x ^ 2 - x + 5) + 2(4 - x) ; b) 25x - 4(3x - 1) + 7x(5 - 2x ^ 2) ; c) 4x(x ^ 3 - 4x ^ 2) + 2x(2x ^ 3 - 3x ^ 2 + 7x + 1) ; d) - 4/2 * x ^ 2 * (3x ^ 2 - 6x + 9) + 8x(x ^ 3 - 3x ^ 2 + 2x - 1) - x(x ^ 2 - 2x) 4A. Rút gọn các biểu thức sau: a) (4x - 1)(3x + 2) - 5x(x - 3) ; b) (5x - 2)(x + 1) - 2x(x ^ 2 + x - 3) ; c) (x + 1)(2x - 1) + x(x ^ 2 - x + 1) ; d) (3x ^ 2 + x + 2) * 0.3 - (2x + 1) * 0.2(3 + x) .
Bạn đăng từng bài 1 và tách bài ra cho dễ nhìn hơn nhé!
3A:
a: =15x^4-5x^2-24x^4+18x^2-6x-6x^4+2x^3
=-15x^4+2x^3+13x^2-6x
b: =1/2(x^3-2/5x^2+2x)-3/4x^3-1/4x^2-x^2-x
=1/2x^3-1/5x^2+x-3/4x^3-5/4x^2-x
=-1/4x^3-29/20x^2
c: =3/2x^2(x^2-2x)-2x(x^3+x^2+1)+2(x-1)
=3/2x^4-3x^3-2x^4-2x^3-2x+2x-2
=-1/2x^4-5x^3-2
d: =x^4-2x^3+5x^3-10x^2+5/2x-x^4+x^3-x^2
=4x^3-11x^2+5/2x
Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến:
a) A(x)=x²-2x³+.3x²-6x+1/3-7x+6x²+2/3+3x⁴
b) B(x)=-x⁴+2x-1+2x⁴+3x³+2-x
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
rút gọn phân thức sau:
A=3x(2x^2-x+1)-x^2(x+3)
B=(x-3)(3x^2-x-4)
C=(2x-5)(3x-1)+(2x-7)(1-6x)
D=(x-2)^2-(x-1)^2