Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KuDo Shinichi
Xem chi tiết
Thiên An
1 tháng 5 2017 lúc 9:02

Với mọi x, y > 0 ta luôn có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) 

Đẳng thức xảy ra   \(\Leftrightarrow\)  x = y

Ta có:   \(\frac{2}{2a+b+c}=\frac{1}{2}.\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(=\frac{1}{8}\left(\frac{4}{a+b}+\frac{4}{a+c}\right)\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)=\frac{1}{8}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (1)

Tương tự \(\frac{2}{2b+c+a}\le\frac{1}{8}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) (2)   và    \(\frac{2}{2c+a+b}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)  (3)

Cộng (1), (2) và (3) ta được: \(A\le\frac{1}{8}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Vậy \(A_{max}=\frac{3}{2}\) \(\Leftrightarrow\) \(a=b=c=1\)

Yên Nhã Nhược Hạ
Xem chi tiết
Rin Huỳnh
21 tháng 1 2022 lúc 6:47

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)

Xuân Lộc
Xem chi tiết
Phùng Đức Tú
Xem chi tiết
bou99
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:42

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:45

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

Tấn Sang Nguyễn
Xem chi tiết
Minh Hiếu
16 tháng 9 2023 lúc 15:36

Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Rightarrow bc+ca=2ca\)

\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)

\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)

Ta có :

\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)

Áp dụng bđt cô si cho 2 số dương

\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)

\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Anh Đặng
Xem chi tiết
Nguyễn Tiến Anh
Xem chi tiết
Hùng
Xem chi tiết