Cho a,b,c >0 thoả mãn a+b+c=2
tìm GTLN của căn 2a+bc + căn 2b+ca + căn 2c+ab
1/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMRa/(a+2bc)+b/(b+2ac)+c/(c+2a) \(\ge\)1
2/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMR:a/(2a+bc) +b/(2b+ac) +c/(2c+ab) \(\le\)1
a/ Tìm x, y cặp số nguyên không âm (x,y) thoã mãn 3^x-y^3=1
b/ Cho a, b, c thoả mãn a+b+c=0.
Chứng minh N=1-(ab+2c^2)(bc+2a^2)(ca+2b^2) là số dương
cho các số a,b,c thoả mãn a+b+c+ab+bc+ca+abc=0
tính P=\(\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ca}\)
Cho A=\(\frac{4bc-a^2}{bc+2a^2}\),B=\(\frac{4ca-b^2}{ac+2b^2}\),C=\(\frac{4ab-c^2}{ab+2c^2}\).CMR nếu a+b+c=0 thì A.B.C=1
Cho các số thực dương a,b,c thoả mãn \(a^2b^2+b^2c^2+c^2a^2=3abc\). Chứng minh rằng \(\sqrt{\frac{a+b^2c}{2}}+\sqrt{\frac{b+c^2a}{2}}\sqrt{\frac{c+a^2b}{2}}\le\frac{3}{abc}\).
Giúp mình với, mình đang cần gấp
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
Cho A=\(\frac{4bc-a^2}{bc+2a^2}\),B=\(\frac{4ca-b^2}{ac+2b^2}\),C=\(\frac{4ab-c^2}{ab+2c^2}\)
Chứng minh : Nếu a+b+c=0 thì A.B.C=1