Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)
Cho 3 số a, b, c khác 0 thỏa mãn điều kiện:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
Cho các số thực a,b,c thỏa mãn ( b+2c ) ( c+2a ) ( c+2b ) khác 0 và \(\frac{a}{b+2c}\)=\(\frac{b}{c+2a}\)=\(\frac{c}{a+2b}\). Chứng minh rằng a=b=c
cho a,b,c thoả mãn: a^2+b^2+4c^2+3=2a+2b+4c. Tính M = (a+b+2c)^3 - 21
Cho các số thực a,b,c thỏa mãn ( b+2c ) ( c+2a ) ( c+2b ) khác 0 và \(\frac{a}{b+2c}\)= \(\frac{b}{c+2a}\)= \(\frac{c}{a+2b}\). Chứng minh rằng a=b=c
cho 3 số a, b, c khác 0 thỏa mãn điều kiện 2a+b+c/a=a+2b+c/b=a+b+2c/c Tính A=a+b/c+b+c/a+c+a/b
Giúp mk nha! Mk thanks trc ^_^
Giúp mk vs mk đang cần gấp
Cho 2x+2z-x/a=2z+2x-y/b=2x+2y-z/c.Với a,b,c khác 0 ;2a+2b khác c,2b+2c khác a,2a+2c khác b
Cmr: x/2b+2c-a=y/2c+2a-b=z/2a+2b-c
Cho a,b,c khác 0 thỏa mãn: (a-b+c)/2b=(c-a+b)/2a=(a-c+b)/2c
Tính P= (1+c/b)(1+b/a)(1+a/c)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
Cho 2y+2z-x phần a=2z+2x-y phần b =2x+2y-z phần c với a,b,c khác 0,2a+2b khác c ,2b+2c khác a,2c+2a khác b CHỨNG MINH
x phần 2b+2c-a= y phần 2c+2a-b =z phần 2a+2b-c