9x^2+6xy+y^2
9x^2+y^2+6xy
\(=\left(3x\right)^2+2.3.xy+y^2=\left(3x+y\right)^2\)(hằng đẳng thức số 1)
Cho mk hỏi:
\(9x^2+y^2+6xy=\left(3x\right)^2+2.3x.y+y^2=\left(3x+4\right)^2\)
Tại sao: 6xy lại thành : 2.3x.y+y^2
Áp dụng hằng đẳng thức bạn ơi =))
Ta thấy: (x + y )2 = x2 + 2.x.y + y2
=> 9x2 + y2 + 6xy = 9x2 + 6xy + y2
= (3x)2 + 2.3x.y + y2 = (3x + 4 )2
\(6xy\) được tách ra thành \(2.3.x.y\) chứ có phải là \(2.3.x.y+y^2\) đâu bn
Tìm GTLN và GTNN của
\(\dfrac{3x^2-2xy+y^2}{9x^2-6xy+2y^2}\)
Cho hai số dương x,y thỏa mãn: 2x3-2x2+x2y+2xy2+y3-2y2=0
Tìm giá trị nhỏ nhất của biểu thức Q=\(\dfrac{3}{9x^2+6xy+y^2}=\dfrac{3}{3x^2+6xy+2y^2}\)
Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)
Từ giả thiết ta có:
\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x+y=2\)
Do đó:
\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)
\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)
\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)
a ) \(9x^2+6xy+y^2\)
\(9x^2+6xy+y^2\)
\(=\left(3x\right)^2+2.3x.y+y^2\)
\(=\left(3x+y\right)^2\)
Tìm các số nguyên x, y biết
\(9x^2+3y^2+6xy-6x+2y-35=0\)
`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`
`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`
`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`
Vì `(3x+y=1)^2>=0`
`=>2(y+1)^2<=37`
`=>(y+1)^2<=37/2`
Mà `(y+1)^2` là scp
`=>(y+1)^2 in {0,1,4,8,16}`
`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`
`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`
Đến đây dễ rồi thay y vào rồi tìm x thôi!
Tính HĐT :
9x2 + y2 + 6xy
9x2 + y2 + 6xy
= ( 3x )2 + y2 + 6xy
= ( 3x + y )2
C/m 9x2y2+y2-6xy+y+2 \(\ge\)0
Bài làm:
Ta có: \(9x^2y^2+y^2-6xy+y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(3xy-1\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> BT lớn hơn hẳn ko
chứng minh P(x,y)=9x^2y^2+y^2-6xy-2y+1>=0 . please help me the exercise!!!
Bạn xem lại đề bài:
Giải thích:
Nếu x = 1/3 và y = 1
Ta có:
P ( 1/3, 1 ) = (\(9.\left(\frac{1}{3}\right)^2.1^2+1^2-6.1.\frac{1}{3}-2+1=-1< 0\)
bạn giải thích cách làm của bạn giúp tớ được không ???
Nghĩa là đề của bạn bị sai.
Bởi vì nếu thay giá trị x = 1/3 và y = 1 vào sẽ không thỏa mãn.