Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thắm nguyễn
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Hồng Phúc
13 tháng 8 2021 lúc 22:11

\(A=\dfrac{\sqrt{4x^2-4x+1}}{4x-2}=\dfrac{\sqrt{\left(2x-1\right)^2}}{2\left(2x-1\right)}=\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)

\(\Rightarrow\left|A\right|=\left|\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\right|=\dfrac{\left|2x-1\right|}{2\left|2x-1\right|}=\dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 22:11

Ta có: \(A=\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\)

\(=\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)

\(=\left[{}\begin{matrix}-\dfrac{\left(2x-1\right)}{2\left(2x-1\right)}=-\dfrac{1}{2}\left(x< \dfrac{1}{2}\right)\\\dfrac{2x-1}{2\left(2x-1\right)}=\dfrac{1}{2}\left(x\ge\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|A\right|=0.5\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 9:48

Căn bậc hai. Căn bậc ba

Dennis
31 tháng 7 2017 lúc 20:34

A = \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\)

A = \(\dfrac{\sqrt{\left(2x-1\right)^2}}{2\left(2x-1\right)}\)

A = \(\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)

\(\left|A\right|=\dfrac{2x-1}{2\left(2x-1\right)}\) \(\Rightarrow\left|A\right|=\dfrac{1}{2}=0,5\left(x\ne0,5\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2018 lúc 2:49

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Báo Mẫn
Xem chi tiết
Y
14 tháng 5 2019 lúc 11:18

a) A \(=\frac{x^2-4}{2}\cdot\sqrt{\frac{2^2}{\left(x-2\right)^2}}\) \(=\frac{x^2-4}{2}\cdot\left|\frac{2}{x-2}\right|\)

+ Với x < 2 ta có \(A=\frac{x^2-4}{2}\cdot\frac{2}{2-x}\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{2-x}=-\left(x+2\right)\)

+ Với x > 2 ta có : \(A=\frac{x^2-4}{2}\cdot\frac{2}{x-2}\)

\(A=\frac{\left(x-2\right)\left(x+2\right)}{x-2}=x+2\)

câu b và c tương tự

thắm nguyễn
Xem chi tiết
nguyễn hoàng sơn
26 tháng 10 2019 lúc 23:31

ấn vào đúng cho mk đi mk ân cho bạn ok

Khách vãng lai đã xóa
duong thi thanh thuy
Xem chi tiết
Duy Đỗ Ngọc Tuấn
13 tháng 6 2018 lúc 0:13

I not sure for this answer if have any trouble you can ask me

a)\(\sqrt{x^2-4x+5}\ge\forall x\)

\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)

\(\sqrt{\left(x+1\right)^2}\ge0\forall x\)

nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)

Komorebi
13 tháng 6 2018 lúc 8:57

câu a chưa rõ đề, bắt chứng minh nhưng ko biết \(\ge\) cái j ms đc chứ ạ ?

Dương Trần
Xem chi tiết
Kiyotaka Ayanokoji
27 tháng 7 2020 lúc 12:29

Trả lời:

a,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=t\)\(\Rightarrow x=t^2+1\)

Đẳng thức đã cho trở thành:

\(VT=\)\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}\)

\(=\sqrt{t^2+2t+1}+\sqrt{t^2-2t+1}\)

\(=\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}\)

\(=t+1+t-1\)

\(=2t\)

\(=2.\sqrt{x-1}=VP\)

Vậy \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)

b, \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}=\sqrt{6}\)

Đặt \(\sqrt{4x-1}=t\)\(\Rightarrow2x=\frac{t^2+1}{2}\)

Đẳng thức đã cho trở thành:

\(VT=\sqrt{\frac{t^2+1}{2}+t}+\sqrt{\frac{t^2+1}{2}-t}\)

\(=\sqrt{\frac{t^2+2t+1}{2}}+\sqrt{\frac{t^2-2t+1}{2}}\)

\(=\sqrt{\frac{\left(t+1\right)^2}{2}}+\sqrt{\frac{\left(t-1\right)^2}{2}}\)

\(=\frac{t+1}{\sqrt{2}}+\frac{t-1}{\sqrt{2}}\)

\(=\frac{2t}{\sqrt{2}}\)

\(=\frac{2.\sqrt{4x-1}}{\sqrt{2}}\)

Khách vãng lai đã xóa
hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:57

14:

\(A=\sqrt{-4x^2+4x+7}\)

\(=\sqrt{-\left(4x^2-4x-7\right)}\)

\(=\sqrt{-\left(4x^2-4x+1-8\right)}\)

\(=\sqrt{-\left(2x-1\right)^2+8}< =\sqrt{8}=2\sqrt{2}\)

Dấu = xảy ra khi 2x-1=0

=>\(x=\dfrac{1}{2}\)

13:

\(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

=>\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}>=0\)

=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)>=0\)

=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)(luôn đúng)