Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Uyên
Xem chi tiết
Trên con đường thành côn...
12 tháng 2 2022 lúc 19:02

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

Tạ Uyên
12 tháng 2 2022 lúc 18:14

giúp mình câu hỏi này với ah.

:vvv
Xem chi tiết
Phương Khánh
Xem chi tiết
tthnew
22 tháng 4 2020 lúc 16:41

Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)

Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)

Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)

Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)

\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)

\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)

Bất đẳng thức cuối hiển nhiên.

Đẳng thức xảy ra khi \(a=b=c=1\). Done.

tthnew
23 tháng 4 2020 lúc 8:39

Không muốn cách dễ hiểu như trên thì dùng cách khó hiểu một tí cũng hong sao :3

Giả sử \(c=\min\{a,b,c\}\)\(,\) ta có:

\(\text{VT-VP}={\frac { \left( a+b+c \right) \Big[{c}^{2} \left( a-b \right) ^{2} \left( a+b \right) +{a}^{2} \left( b-c \right) \left( b+c \right) \left( a- c \right) \Big]}{ab+ac+bc}}+{\frac {abc \left( 2\,a+2\,b+2\,c+3 \right) \left( a+b+c-3 \right) ^{2}}{2\,ab+2\,ac+2\,bc}} \geqq 0\)

Trần Quốc Khanh
23 tháng 4 2020 lúc 21:12

Thiên tài

VUX NA
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
21 tháng 8 2021 lúc 19:56

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

chúc bn hok tốt

Trần Vũ Phương Thảo
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 9:20

Lời giải:
Áp dụng BĐT Cô-si:

$(a+b+c)(ab+bc+ac)\geq 9abc$

$\Rightarrow abc\leq \frac{1}{9}(a+b+c)(ab+bc+ac)$. Do đó:

$(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc$

$\geq (ab+bc+ac)(a+b+c)-\frac{(ab+bc+ac)(a+b+c)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)$

$\Rightarrow (a+b+c)(ab+bc+ac)\leq \frac{9}{8}(*)$

Mà cũng theo BĐT Cô-si:

$1=(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3$

$\Rightarrow a+b+c\geq \frac{3}{2}(**)$

Từ $(*); (**)\Rightarrow ab+bc+ac\leq \frac{9}{8}.\frac{1}{a+b+c}\leq \frac{9}{8}.\frac{2}{3}=\frac{3}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$

Linh Đỗ
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Akai Haruma
31 tháng 7 2023 lúc 21:03

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Phương Akane
Xem chi tiết
Nguyễn Thị Thanh Hoa
14 tháng 5 2021 lúc 9:43

DEO AI BT DAU A.Zay nen tu lam nha.

Khách vãng lai đã xóa
Trần Minh Tiến
Xem chi tiết
missing you =
12 tháng 6 2021 lúc 16:44

? abc=? (1 hay 2020)