Lời giải:
Áp dụng BĐT Cô-si:
$(a+b+c)(ab+bc+ac)\geq 9abc$
$\Rightarrow abc\leq \frac{1}{9}(a+b+c)(ab+bc+ac)$. Do đó:
$(a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc$
$\geq (ab+bc+ac)(a+b+c)-\frac{(ab+bc+ac)(a+b+c)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)$
$\Rightarrow (a+b+c)(ab+bc+ac)\leq \frac{9}{8}(*)$
Mà cũng theo BĐT Cô-si:
$1=(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3$
$\Rightarrow a+b+c\geq \frac{3}{2}(**)$
Từ $(*); (**)\Rightarrow ab+bc+ac\leq \frac{9}{8}.\frac{1}{a+b+c}\leq \frac{9}{8}.\frac{2}{3}=\frac{3}{4}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$