Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
D O T | ☪ Alan Wa...
Xem chi tiết
Lê Tài Bảo Châu
13 tháng 10 2019 lúc 22:59

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Lê Tài Bảo Châu
13 tháng 10 2019 lúc 23:07

Mình làm có gì sai hả @@ 

lê duy mạnh
17 tháng 10 2019 lúc 20:05

do em điểm cao qua mà

tích cho a đi

Rhider
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 20:35

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

Lê Thúy An
Xem chi tiết
Lê Thúy An
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Lê Thành Vinh
5 tháng 4 2017 lúc 21:37

A=x2+2y2+2xy+2x-4y+2013

=x2+y2+1+2xy+2x+2y+y2-6y+9+2003

=(x+y+1)2+(y-3)2+2003

Min A=2003 tại x=-4;y=3

Nghĩa Phan Thế
5 tháng 4 2017 lúc 21:40

A= (X2+2XY+Y2) + 2(X+Y)+1+Y2-6Y+9+2003

A=(X+Y)2+ 2(X+Y)+1+(Y-3)2+2003

A=(X+Y+1)2+(Y-3)2+2003

=> A>=2003

(DẤU "=" XẢY RA KHI X=-4;Y=3)

Le Trang Nhung
Xem chi tiết
Trần Văn Thành
Xem chi tiết
trần thị ngọc trâm
Xem chi tiết