xét tính chẵn lẽ của hàm số f(x)=x4-3x2+1
Hàm số f(x) = x (x4 - 3x2 -5) là :
A.Hàm số vừa chẵn, vừa lẻ B.Hàm số chẵn
C.Hàm số không chẵn, không lẻ D.Hàm số lẻ
Xét tính chẵn lẻ của hàm số : y = x + x 3 x 6 - x 4 + x 2 - 1
A. hàm số chẵn
B. hàm số lẻ
C. hàm số không chẵn; không lẻ
D. hàm số vừa chẵn vừa lẻ
Xét tính chẵn, lẻ của các hàm số
y = 3 x 2 - 1
Tập xác định D = R; ∀ x ∈ D có -x ∈ D và
f ( - x ) = 3 . ( - x ) 2 - 1 = 3 x 2 - 1 = f ( x )
Vậy hàm số đã cho là hàm số chẵn.
Cho hàm số f(x) = x4. Hàm số g(x) = f'(x) - 3x2 - 6x+ 1 đạt cực tiểu, cực đại lần lượt tại x1, x2. Tính m = g(x1). g(x2)
\(f'\left(x\right)=4x^3\Rightarrow g\left(x\right)=4x^3-3x^2-6x+1\)
\(g'\left(x\right)=12x^2-6x-6=0\Rightarrow\left[{}\begin{matrix}x_2=-\dfrac{1}{2}\\x_1=1\end{matrix}\right.\)
\(\Rightarrow g\left(-\dfrac{1}{2}\right).g\left(1\right)=\dfrac{11}{4}.\left(-4\right)=-11\)
\(y'=\left(6x^5-6\right)f'\left(x^6-3x^2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\f'\left(x^6-3x^2\right)=0\end{matrix}\right.\) trong đó \(x=1\) bội lẻ
\(f'\left(x\right)=0\) có các nghiệm \(x=-2;0;2;a;6\)
\(\Rightarrow f'\left(x^6-3x^2\right)=0\Leftrightarrow\) 5 trường hợp:
\(x^6-3x^2=-2\) \(\Leftrightarrow\left(x+1\right)^2\left(x-1\right)^2\left(x^2+2\right)=0\) có 2 nghiệm \(x=-1\) (bội chẵn) và \(x=1\) (bội chẵn)
.... làm tương tự
Riêng với \(x^6-3x^2=a\) thì dựa trên BBT của \(y=x^6-3x^2\) ta thấy pt này có 2 nghiệm đều bội lẻ khi \(4< a< 6\)
Đếm số nghiệm bội lẻ là được
Tìm TXĐ và xét tính chẵn lẽ của hàm số?
y=\(1/tanx\)
y= 1/ 2cox x +1
y=\(sin^2\)x + 2 cosx -3
a, ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(y=f\left(x\right)=\dfrac{1}{tanx}\)
\(f\left(-x\right)=\dfrac{1}{tan\left(-x\right)}=-\dfrac{1}{tanx}=-f\left(x\right)\Rightarrow\) Là hàm số lẻ.
c, \(y=f\left(x\right)=sin^2x+2cosx-3\)
\(f\left(-x\right)=sin^2\left(-x\right)+2cos\left(-x\right)-3\)
\(=\left(-sinx\right)^2+2cosx-3\)
\(=sin^2x+2cosx-3=f\left(x\right)\)
\(\Rightarrow\) Là hàm số chẵn.
Xét tính chẵn lẽ của các hàm số a. y=2x³+4x b. y=-x⁴+2x²
Xét tính chẵn lẻ của các hàm số y = 3x2 – 2
y = f(x) = 3x2 – 2
TXĐ:D = R ⇒ x ∈ D thì-x ∈ D
Ta có: f(-x) = 3(-x)2 – 2 = 3x2 – 2 = f(x)
Vậy hàm số y = f(x) = 3x2 – 2 là hàm số chẵn
Xét tính đơn điệu của hàm số: f(x) = x + |3x2 + 9x -12|
Cho hàm số f(x) = -x4 + 4x3 – 3x2 + 2x + 1. Giá trị f’(-1) bằng:
A. 4.
B. 14.
C. 15.
D. 24.
Chọn D.
Ta có: f’(x) = -4x3 + 12x2 – 6x + 2.
Nên f’(-1) = 24.