giải hộ mình với:
2cos22x + \(\sqrt{3}\)sin4x = 3
có ai biết giải ko giải hộ mình mấy bài này với ( giải chi tiết hộ mình nhé)
1, \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
2, \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
3, \(\sqrt{4+\sqrt{5\sqrt{3+}5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
4, \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
5, \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
6, \(\sqrt{4+\sqrt{8}.\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
7, \(\sqrt{8\sqrt{3}-2\sqrt{25\sqrt{12}+4\sqrt{192}}}\)
\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)
\(=\sqrt{12}+1=2\sqrt{3}+1\)
\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
2) biến đổi khúc sau như câu 1:
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)
\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)
\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)
có ai biết giải bài này không hộ mình với mong các bạn giúp cho ( giải chi tiết hộ mình nhé, xin cảm ơn)
Bài 22: rút gọn
1, \(\sqrt{3-\sqrt{5}}\) 2, \(\sqrt{7+3\sqrt{5}}\)
3, \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-2\)
Bài 26: giải các phương trình sau
1, /3-2x/=\(2\sqrt{5}\) →( dấu này '/ /' là dấu giá trị tuyệt đối nha mn
2, \(\sqrt{x^2}=12\) 3, \(\sqrt{x^2-2x+1}=7\)
có ai biết giải bài này không hộ mình với mong các bạn giúp cho ( giải chi tiết hộ mình nhé, xin cảm ơn)
Bài 22: rút gọn
1, \(\sqrt{3-\sqrt{5}}\) 2, \(\sqrt{7+3\sqrt{5}}\)
3, \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
Bài 26: giải các phương trình sau
1, /3-2x/=\(2\sqrt{5}\) →( dấu này '/ /' là dấu giá trị tuyệt đối nha mn)
2, \(\sqrt{x^2}=12\) 3, \(\sqrt{x^2-2x+1}=7\)
4, \(\sqrt{\left(x-1\right)^2}=x+3\)
22,
1, Đặt √(3-√5) = A
=> √2A=√(6-2√5)
=> √2A=√(5-2√5+1)
=> √2A=|√5 -1|
=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)
=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)
2, Đặt √(7+3√5) = B
=> √2B=√(14+6√5)
=> √2B=√(9+2√45+5)
=> √2B=|3+√5|
=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)
=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)
3,
Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C
=> √2C=√(18+2√17) - √(18-2√17) -\(2\)
=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)
=> √2C=√17+1- √17+1 -\(2\)
=> √2C=0
=> C=0
26,
|3-2x|=2\(\sqrt{5}\)
TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)
3-2x=2\(\sqrt{5}\)
-2x=2\(\sqrt{5}\) -3
x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)
TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)
3-2x=-2\(\sqrt{5}\)
-2x=-2√5 -3
x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)
Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)
2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12
3, \(\sqrt{x^2-2x+1}\)=7
⇔ |x-1|=7
TH1: x-1≥0 ⇔ x≥1
x-1=7 ⇔ x=8 (TMĐK)
TH2: x-1<0 ⇔ x<1
x-1=-7 ⇔ x=-6 (TMĐK)
Vậy x=8, -6
4, \(\sqrt{\left(x-1\right)^2}\)=x+3
⇔ |x-1|=x+3
TH1: x-1≥0 ⇔ x≥1
x-1=x+3 ⇔ 0x=4 (KTM)
TH2: x-1<0 ⇔ x<1
x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)
Vậy x=-1
giải pt sau :
\(\sqrt{3}sin4x-cos4x=sinx-\sqrt{3}cosx\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x=\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin4x.cos\frac{\pi}{6}-cos4x.sin\frac{\pi}{6}=sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{6}\right)=sin\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{6}=x-\frac{\pi}{3}+k2\pi\\4x-\frac{\pi}{6}=\pi-x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
Tính \(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
Giải hộ mình với
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{5}+\sqrt{5}+1-1\)
\(\sqrt{2}A=2\sqrt{5}\)
\(A=\sqrt{10}\)
P/s tham khảo nha
Giải phương trình :
\(2\sin6x-2\sin4x+\sqrt{3}\cos2x=\sqrt{3}+\sin2x\)
Từ phương trình ban đầu ta có : \(2\cos5x\sin x=\sqrt{3}\sin^2x+\sin x\cos x\)
\(\Leftrightarrow\begin{cases}\sin x=0\\2\cos5x=\sqrt{3}\sin x+\cos x\end{cases}\)
+) \(\sin x=0\Leftrightarrow x=k\pi\)
+)\(2\cos5x=\sqrt{3}\sin x+\cos x\Leftrightarrow\cos5x=\cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\begin{cases}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{18}+\frac{k\pi}{3}\end{cases}\)
Giải phương trình :
\(\left(10+6\sqrt{3}\right)^{2\sin x}=\sqrt{\left(\sqrt{3}+1\right)^{\sin4x}}\)
Ta có \(10+6\sqrt{3}=\left(\sqrt{3}+1\right)^3\)nên phương trình đã cho tương đương với :
\(\left(\sqrt{3}+1\right)^{6\sin x}=\left(\sqrt{3}+1\right)^{\frac{1}{2}\sin4x}\)
\(\Leftrightarrow6\sin x=2\sin x.\cos x.\cos2x\)
\(\Leftrightarrow\sin x\left(\cos x.\cos2x-3\right)=0\)
Do \(\cos x.\cos2x-3< 0\) nên phương trinh chỉ có nghiệm \(\sin x=0\Leftrightarrow x=k\pi,k\in Z\)
\(\lim\limits_{x\to 1}\) \(\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}\)
Giải hộ mình câu này với
có ai biết giải bài này k hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
2, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
3, \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}\)
4, \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)