Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn vũ phong
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 23:16

\(ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{8+\sqrt{x}}-3\right)+\left(\sqrt{5-\sqrt{x}}-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+3}+\dfrac{-\sqrt{x}+1}{\sqrt{5-\sqrt{x}}+2}=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}=0\left(vô.n_0,\forall x\ge0\right)\end{matrix}\right.\)

Vậy PT có nghiệm duy nhất \(x=1\)

Oriana.su
Xem chi tiết
Hồng Phúc
15 tháng 9 2021 lúc 15:18

a, ĐK: \(x\ge11\)

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)

Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{​​}8\)

\(\Rightarrow\) phương trình vô nghiệm.

Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 15:22

\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)

\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)

Hồng Phúc
15 tháng 9 2021 lúc 15:23

b, ĐK: \(x\ge\dfrac{5}{2}\)

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)

\(=\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\)

\(\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|\)

\(=4\)

Đẳng thức xảy ra khi: 

\(\left(\sqrt{2x-5}+3\right)\left(1-\sqrt{2x-5}\right)\ge0\)

\(\Leftrightarrow1-\sqrt{2x-5}\ge0\)

\(\Leftrightarrow\sqrt{2x-5}\le1\)

\(\Leftrightarrow0\le2x-5\le1\)

\(\Leftrightarrow\dfrac{5}{2}\le x\le3\)

Nguyễn Lâm Ngọc
Xem chi tiết
lý canh hy
Xem chi tiết
Vũ Tiến Manh
12 tháng 10 2019 lúc 16:06

điệu kiện \(\hept{\begin{cases}x\ge0\\2-x\ge0;3-x\ge0;5-x\ge0\end{cases}< =>0\le x\le2;}\)

ta có 2x = \(2\sqrt{2-x}\sqrt{3-x}+2\sqrt{3-x}\sqrt{5-x}+2\sqrt{5-x}\sqrt{2-x}\)

<=> 2x = \(\sqrt{2-x}\left(\sqrt{3-x}+\sqrt{5-x}\right)+\sqrt{3-x}\left(\sqrt{5-x}+\sqrt{2-x}\right)\)+\(\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)\)

<=> 2x = \(\sqrt{2-x}\left(x-\sqrt{2-x}\right)+\sqrt{3-x}\left(x-\sqrt{3-x}\right)+\sqrt{5-x}\left(x-\sqrt{5-x}\right)\)

<=> 2x = x (\(\sqrt{2-x}+\sqrt{3-x}+\sqrt{5-x}\)) - (2-x +3-x + 5-x) 

<=> 2x= x.x - 10 +3x <=> x2+x-10 = 0 <=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{41}}{2}\left(loai\right)\\x=\frac{-1-\sqrt{41}}{2}\left(loai\right)\end{cases}}\) cả 2 nghiệm đều không thỏa mãn \(0\le x\le2\)

=> phương trình vô nghiệm

ò khó quá vì mk mới hc lp 5 à

Khách vãng lai đã xóa
Nguyễn Cảnh Kyf
Xem chi tiết
Nguyễn Linh Chi
29 tháng 2 2020 lúc 7:22

ĐK: \(x\le2\)

pt <=> \(2=2-x+\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}.\)

<=> \(2=\sqrt{2-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right).\)

<=> \(2=\left(\sqrt{2-x}+\sqrt{3-x}\right)\left(\sqrt{5-x}+\sqrt{2-x}\right).\)

<=> \(2\left(\sqrt{5-x}-\sqrt{2-x}\right)=3\left(\sqrt{2-x}+\sqrt{3-x}\right)\)( vì \(\sqrt{5-x}-\sqrt{2-x}\ne0;\forall x\inℝ\))

<=> \(2\sqrt{5-x}=5\sqrt{2-x}+3\sqrt{3-x}\)

<=> \(4\left(5-x\right)=25\left(2-x\right)+9\left(3-x\right)+30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(-57+30x=30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(\hept{\begin{cases}30x-57\ge0\\900x^2-3420x+3249=900x^2-4500x+5400\end{cases}}\)

<=> \(\hept{\begin{cases}x\ge\frac{57}{30}\\x=\frac{239}{120}\end{cases}}\Leftrightarrow x=\frac{239}{120}\)tmđk

Khách vãng lai đã xóa
Dang Van Anh
Xem chi tiết
nguyễn văn sỹ
16 tháng 8 2018 lúc 15:31

sao bình phương dài thế 

lúc đầu mình ko hiểu xong mãi mới hiểu

Miền Nguyễn
Xem chi tiết
Edogawa Conan
13 tháng 8 2021 lúc 21:07

ĐK:\(x\ge\dfrac{5}{2}\)

Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

    \(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)

    \(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

    \(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

    \(\Leftrightarrow2\sqrt{2x-5}=10\)

    \(\Leftrightarrow\sqrt{2x-5}=5\)

    \(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)

Nguyễn Việt Lâm
13 tháng 8 2021 lúc 21:10

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow x=15\)

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Bao Gia
Xem chi tiết
Minh Chu Quang
31 tháng 10 2021 lúc 21:49

=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)

<=> \(x^2-13x+4=0\)

........

 

Minh Chu Quang
31 tháng 10 2021 lúc 21:57

\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)

\(< =>x^2-13x-14=0\)

\(< =>\left(x+1\right)\left(x-14\right)=0\)

..............