cho a b c cmr\(\sqrt{\left(a-b\right)^2+c^2}+\sqrt{\left(a+b\right)^2+c^2}\ge2\sqrt{a^2+c^2}\)
CMR \(\sqrt{\left(a-b\right)^2+c^2}+\sqrt{\left(a+b\right)^2+c^2}\ge2\sqrt{a^2+c^2}\)
Áp dụng bất đẳng thức Mincopxki :
\(\sqrt{\left(a-b\right)^2+c^2}+\sqrt{\left(a+b\right)^2+c^2}\ge\sqrt{\left[\left(a-b\right)+\left(a+b\right)\right]^2+\left(c+c\right)^2}\)
\(=\sqrt{\left(2a\right)^2+\left(2c\right)^2}\)
\(=\sqrt{4a^2+4c^2}\)
\(=2\sqrt{a^2+c^2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\frac{a-b}{c}=\frac{a+b}{c}\Leftrightarrow a-b=a+b\Leftrightarrow-b=b\Leftrightarrow b=0\)
*) Chứng minh bđt Mincopxki cho 2 bộ số :
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)
\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\left(x+z\right)^2+\left(y+t\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+y^2+z^2+t^2+2xz+2yt\)
\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(z^2+t^2\right)=\left(xz+yt\right)^2\)
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)
\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)
\(\Leftrightarrow\left(xt-yz\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow xt=yz\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)
Cho a,b,c thực dương .CMR
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4c+b\right)}}\ge2\sqrt{2}\)
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
toán lớp 5 phiên bản hack não
Cho a, b, c > 0. CMR :
\(\dfrac{\sqrt{a^2+b^2}}{c}+\dfrac{\sqrt{b^2+c^2}}{a}+\dfrac{\sqrt{a^2+c^2}}{b}\ge2\left(\dfrac{a}{\sqrt{b^2+c^2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\)
Cho a, b, c > 0. CMR :
\(\dfrac{\sqrt{a^2+b^2}}{c}+\dfrac{\sqrt{b^2+c^2}}{a}+\dfrac{\sqrt{a^2+c^2}}{b}\ge2\left(\dfrac{a}{\sqrt{b^2+c^2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\)
Lời giải:
Đặt \(\left ( \frac{\sqrt{a^2+b^2}}{c},\frac{\sqrt{b^2+c^2}}{a}, \frac{\sqrt{c^2+a^2}}{b} \right )=(x,y,z)\)
BĐT cần chứng minh tương đương với:
\(x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\((*)\)
------------------------------------------------------------------
Từ cách đặt $x,y,z$ ta có:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\)
Áp dụng BĐT Bunhiacopxky:
\(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}=\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\right)\left(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}\right)\)
\(\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
\(\Leftrightarrow 3\geq 2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
\(\Leftrightarrow xyz\geq \frac{2}{3}(x+y+z)\)
\(\Rightarrow xyz(x+y+z)\geq \frac{2}{3}(x+y+z)^2\)
Áp dụng BĐT AM_GM ta lại có:
\((x+y+z)^2\geq 3(xy+yz+xz)\). Do đó:
\(xyz(x+y+z)\geq 2(xy+yz+xz)\)
\(\Leftrightarrow x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Đúng theo \((*)\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
áp dụng bat dang thuc bunhiacóki
ta có \(\dfrac{\sqrt{a^2+b^2}}{c}\ge\dfrac{a+b}{\sqrt{2}c}\)
ttu vt \(\ge\dfrac{1}{\sqrt{2}}\left(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)
=\(\dfrac{a}{\sqrt{2}}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{b}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+\dfrac{c}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) (1)
áp dung bdt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
ta có (1) \(\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\)
tiếp tục áp dụng bunhia ta có \(\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{\sqrt{2\left(b^2+c^2\right)}}=\dfrac{2a}{\sqrt{b^2+c^2}}\)
ttuong tu ta có \(vt\ge2\left(\dfrac{a}{\sqrt{b^2+c2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\left(dpcm\right)\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c+\(\sqrt{2abc}=2\)
CMR \(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
giúp mik vs nhé cảm ơn rất nhìu
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
cho a,b,c>0.cmr
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\ge2\left(a+b+c\right)\)
Lời giải:
$a^2+2b^2+ab=\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}$
Áp dụng BĐT Bunhiacopxky:
$[\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}](2+6+8)\geq (a+3b+2a+2b)^2$
$\Rightarrow \sqrt{a^2+2b^2+ab}\geq \frac{3a+5b}{4}$
Hoàn toàn tương tự với các căn còn lại suy ra:
$\text{VT}\geq \frac{3a+5b}{4}+\frac{3b+5c}{4}+\frac{3c+5a}{4}=2(a+b+c)$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Bạn xem lại đề xem có nhầm không?
cho a,b,c \(\varepsilon\ R^+\)\(.CMR\ :\ \frac{\sqrt{a^2+b^2}}{c}+\frac{\sqrt{b^2+c^2}}{a}+\frac{\sqrt{c^2+a^2}}{b}\ge2\left(\frac{a}{\sqrt{b^2+c^2}}+\frac{b}{\sqrt{c^2+a^2}}+\frac{c}{\sqrt{a^2+b^2}}\right)\)
Cho a ,b ,c là các số thực dương thỏa mãn a+b+c+\(\sqrt[]{2abc}\)=2 CMR
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-a\right)\left(2-c\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)