Cho tam giác ABC vuông cân tại A có AB=a. Tính |vecto AB+ vecto AC|
Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)
\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)
=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
Cho tam giác ABC vuông cân tại A, AB= a Tínhđộ dài vecto \(3AB\rightarrow\)+→AC
\(\left|3\overrightarrow{AB}+\overrightarrow{AC}\right|=4a\)
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
Cho tam giác ABC vuông cân tại C, AB = 2a và I là trung điểm của BC. Tính |vecto AI - vecto IB|
Tam giác vuông cân tại C \(\Rightarrow AC=\dfrac{AB}{\sqrt{2}}=a\sqrt{2}\)
Do I là trung điểm BC \(\Rightarrow\overrightarrow{IC}=-\overrightarrow{IB}\)
Vậy:
\(\left|\overrightarrow{AI}-\overrightarrow{IB}\right|=\left|\overrightarrow{AI}+\overrightarrow{IC}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Gọi M là một điểm trên cạnh BC và D là chân đường phân giác trong góc A. Tính độ dài vecto MD khi độ dài vecto AM nhỏ nhất
: Cho tam giác ABC vuông tại A có BC cm = 4 . Độ dài của vecto
AB+ AC = bn
Trong tọa độ Oxy, Cho tam giác ABC với A(2:-3),B(4:7),C(-3:2) a) tìm tọa độ vecto AB, vecto AC, vecto BC b) tính tích vô hướng của vecto AB.BC và vecto AB.AC c) tính góc tạo bởi các vecto AB và AC, AB vad BC d) tính chu vi của tam giác ABC
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
cho tam giác ABC có A(-1;3), B(2;4), C(0;1) tính vecto AB.AC tính cos vecto (AB,AC) tính chu vi tam giác ABC
Cho tam giác ABC vuông tại A có AB = 3a, AC = 4a. Khi đó độ dài vecto BC là
Lời giải:
$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.