Giải pt: x2 + x + 24 - 2x\(\sqrt{2x+3}\) = 6\(\sqrt{12-x}\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
giải pt
a) \(x+\sqrt{x+8}\left(1-\sqrt{x+8}\right)=\sqrt{x}+\sqrt{x+3}-8\)
b) \(2\left(2-x\right)=\sqrt{2x-4}\left(\sqrt{5-x}-\sqrt{3x-3}\right)\)
c) \(\sqrt[3]{24+x}.\sqrt{12-x}-6\sqrt{12-x}=x-12\)
d) \(\frac{x-1}{2\sqrt{3-2x}-3}=\frac{x-1}{3-2\sqrt[3]{5+3x}}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))
\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)
\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)
\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\le12\)
\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)
\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)
d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)
\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)
\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)
\(\Leftrightarrow2a^3+3a^2-18a+8=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)
Giải pt \(\left(\sqrt{x+3}+\sqrt{6-x}\right)\left(6\sqrt{2x+6}-2x-13\right)=6\sqrt{2}\)
ĐKXĐ: \(-3\le x\le6\)
Trước hết ta chứng minh:
\(\sqrt{x+3}+\sqrt{6-x}\le3\sqrt{2}\)
Mặt khác điều này hiển nhiên do bất đẳng thức Bunyakovski:
\(VT\le\sqrt{2\left[\left(x+3\right)+\left(6-x\right)\right]}=3\sqrt{2}\)
Đẳng thức xảy ra khi \(x+3=6-x\Leftrightarrow x=\dfrac{3}{2}\)
Mặt khác theo AM-GM:
\(6\sqrt{2x+6}-2x-13=2\sqrt{9\left(2x+6\right)}-2x-13\le\left[9+\left(2x+6\right)\right]-2x-13=2\)
Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$
Từ đây thu được \(VT\le VP.\)
Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$
Vậy \(S=\left\{\dfrac{3}{2}\right\}\)
giải pt \(\sqrt{x+12}-\sqrt{2x+1}\ge\sqrt{x-3}\)
giải pt: \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
ĐKXĐ:\(\left\{{}\begin{matrix}2x-3\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ge0\end{matrix}\right.\Rightarrow x\ge\dfrac{3}{2}\)
\(\sqrt{2x-3}-\sqrt{x}=2x-6\\ \Leftrightarrow\dfrac{2x-3-x}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\\ \Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}-2\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2=0\end{matrix}\right.\)
Với \(x-3=0\Rightarrow x=3\left(tm\right)\)
\(Với\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}-2=0\\ \Leftrightarrow\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\\ \Leftrightarrow2\sqrt{2x-3}+2\sqrt{x}=1\left(đến.đây.bạn.cm.nó,vô.nghiệm.nhé\right)\)
GIẢI PT SAU:
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\sqrt{x+1}+\sqrt{x-1}=4\)
a, ĐKXĐ: ...
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)
\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)
\(\Leftrightarrow4x^2-10x+3=0\)
.....
b, ĐKXĐ: ...
\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Giải pt : \(\sqrt{x+3}+4\sqrt{x}-2x=6-\sqrt{5-x}\)
ĐKXĐ: \(0\le x\le5\)
Pt tương đương:
\(\sqrt{x+3}+4\sqrt{x}+\sqrt{5-x}=2x+6\)
Ta có:
\(VT=\dfrac{1}{2}.2.\sqrt{x+3}+4.1.\sqrt{x}+\dfrac{1}{2}.2.\sqrt{5-x}\)
\(VT\le\dfrac{1}{4}\left(4+x+3\right)+2\left(1+x\right)+\dfrac{1}{4}\left(4+5-x\right)\)
\(\Rightarrow VT\le2x+6=VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=1\\\sqrt{5-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)
Giải phương trình:a, \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b/\(\sqrt[3]{24+x}+\sqrt{12+x}=6\)