1, 100a2 _(a2+25)2
2, x2- 4 xy +4y2 --3-36-36z2
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
a) (a - 2b)x(a + 2b)
b) x2-(y-3)2
=> (x-y+3)(x+y-3)
c) (2a + b - a)(2a + b + a)
=> (a+b)(3a+b)
d) (4(x - 1))2 - (5(x + y))2
⇔ (4x - 4 - 5x - 5y)(4x - 4 + 5x + 5y)
⇔ -(x + 5y + 4)(9x + 5y + -4)
e) (x + 5)2
f) (5x - 2y)2
h) (x - 5)(x2 + 5x + 25)
k) (x + 5)3
Viết các đa thức sau thành tích
1. x2 - 6x + 9
2 25 + 10x + x2
3. \(\dfrac{1}{4}\)a2 + 2ab2 + 4b4
4 \(\dfrac{1}{9}\)-\(\dfrac{2}{3}\)y4 +y8
5 x3 + 8y3
6 8y3 -125
7 a6-b3
8 x2 - 10x + 25
9 8x3 - \(\dfrac{1}{8}\)
10 x2 + 4xy + 4y2
1. x2 - 6x + 9=(x-3)2
2. 25 + 10x + x2=(x+5)2
3. \(\dfrac{1}{4}a^2+2ab^2+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4.\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5.x3 + 8y3=(x+8y)(x2-8xy+64y2)
6.8y3 -125=(2y-5)(4y2+10y+25)
7.a6-b3=(a2-b)(a4+a2b+b2)
8 x2 - 10x + 25=(x-2)2
1) \(x^2-6x+9=\left(x-3\right)^2\)
2) \(25+10x+x^2=\left(5+x\right)^2\)
3) \(\dfrac{1}{4}a^2+2ab+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4) \(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
6) \(8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
7) \(a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
8) \(x^2-10x+25=\left(x-5\right)^2\)
9) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
1) x3-x2+2x-2 4) ax-2x-a2+2a 7) x2-6xy-25z2+9y2
2) x2-y2+2x+2y 5) 2xy +3z+6y+xz 8) x3-2x2+x
3) x2/4+2xy+4y2-25 6) x2y2+yz+y3+zx2 9) x4+4
4/ Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy
e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x)
n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12
l) 81x2 + 4
a,x2-y2-2x+2y
= (x+y)(x-y) - 2(x-y)
= (x-y)(x+y-2)
b,2x+2y-x2-xy
= 2(x+y) - x(x+y)
= (x+y)(2-x)
c,3a2-6ab+3b2-12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a-b)2 - 4c2)
= 3(a-b-2c)(a-b+2c)
d,x2-25+y2+2xy
= (x+y)2 - 25
= (x+y+5)(x+y-5)
e) a2+2ab+b2-ac-bc
= (a+b)2-c(a+b)
= (a+b)( a+b-c)
f) x2-2x-4x2-4y
= -3x2-2x-4y
= -(3x2+2x+4y)
g)x2y-x3-9y+9x
= x2(y-x)-9(y-x)
= (y-x)(x2-9)
h) x2(x-1)+16(1-x)
= x2(x-1)-16(x-1)
= (x-1)(x2-16)
= (x-1)(x-4)(x+4)
n) 81x2-6yz-9y2-z2
= (9x)2-[(3y)2+6yz+z2]
=(9x)2-(3y+z)2
=(9x+3y+z)(9x-3y-z)
m) xz- yz-x2+2xy-y2
= z(x-y)-(x2-2xy+y2)
= z(x-y)-(x-y)2
= (x-y)(z-x+y)
p) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x+3) + 5(x+3)
= (x+3)(x+5)
k) x2 - x - 12
= x2 + 3x - 4x - 12
= x(x+3) - 4(x+3)
= (x+3)(x-4)
bài 2: viết cá đa thức sau dưới dạng hằng đẳng thức đáng nhớ sau :
a,x2+2x+1=
b,y2+4y+4=
c,9-6x+x2=
d,a2-14a+49=
e,m2-4m+4=
f,4x2-4x+1=
g,a2+10a+25=
h,100-20z+z2=
i,x2+6xy+9y2=
j,4x2-12xz+25b2=
k,a2+10ab+25b2=
l,x4+2x2+1=
m,y6-2y3+1=
n,c10-10c5+25=
o,9x4+12x2y+4y2=
p,25m4n6-10m2n3=
em đang cần gấp ,giúp em với
\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)
Tính:
a) (\(\dfrac{1}{3}\)x+2y).(\(\dfrac{1}{9}\)x2-\(\dfrac{2}{3}\)xy+4y2)
b) (x2-\(\dfrac{1}{3}\)).(x4+\(\dfrac{1}{3}\)x2+\(\dfrac{1}{9}\))
c) (y-5).(25+5y+y2+2y)
d) (5x+3y).(25x2-15xy+9y2)
Giải chi tiết giúp mình nha.Cảm ơn
a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)
Phân tích đa thức thành nhân tử
1, a6 + b3
2, x2 – 10x + 25
3, 8x3 – \(\dfrac{1}{8}\)
4, x2 + 4xy + 4y2
1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2, \(x^2-10x+25=\left(x-5\right)^2\)
3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2) \(x^2-10x+25=\left(x-5\right)^2\)
3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)
4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1: \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2: \(x^2-10x+25=\left(x-5\right)^2\)
3: \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4: \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
(\(\dfrac{1}{3}\)x+2y)(\(\dfrac{1}{9}\)x2-\(\dfrac{2}{3}\)xy+4y2)
\(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)