Tìm x biết \(\sqrt{25x}=10\)
tìm x biết
a, \(\sqrt{(x+3)^2}\)=12
b, \(\sqrt{25x-25}-\sqrt{9x-9}\)=10
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(x+3\right)^2}=12\)
=>\(\left|x+3\right|=12\)
=>\(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
b: ĐKXĐ: x>=1
\(\sqrt{25x-25}-\sqrt{9x-9}=10\)
=>\(5\sqrt{x-1}-3\sqrt{x-1}=10\)
=>\(2\sqrt{x-1}=10\)
=>x-1=25
=>x=26(nhận)
Tìm x:
\(\sqrt{9x+18}-0,5\sqrt{4x+8}-\dfrac{4}{5}\sqrt{25x+50}=-10\)
ĐK: \(x+2\ge0\Leftrightarrow x\ge-2\)
\(3\sqrt{x+2}-\sqrt{x+2}-4\sqrt{x+2}=-10\)
\(-2\sqrt{x+2}=-10\)
\(\sqrt{x+2}=5\)
\(\left\{{}\begin{matrix}5\ge0\left(ld\right)\\x+2=25\end{matrix}\right.\)\(\Leftrightarrow x=23\left(n\right)\)
Tìm x, biết
a) \(\sqrt{9x^2}\)=12
b) \(\sqrt{25x^2}\)=\(\left|-50\right|\)
a)
\(\sqrt{9x^2}=12\\ < =>\left(\sqrt{9x^2}\right)^2=12^2\\ < =>9x^2=144\\ < =>x^2=16\\ < =>\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
b)
\(\sqrt{25x^2}=\left|-50\right|\\ < =>\sqrt{25x^2}=50\left(vì-50< 0\right)\)
\(< =>\left(\sqrt{25x^2}\right)^2=50^2\\ =>25x^2=2500\\ < =>x^2=100\\ < =>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
\(a)\sqrt{9x^2}=12\\ \Leftrightarrow\sqrt{\left(3x\right)^2}=12\\ \Leftrightarrow\left|3x\right|=12\\ \Leftrightarrow\left|x\right|=\dfrac{12}{3}\\ \Leftrightarrow x=4\)
Vậy x=4
\(b)\sqrt{25x^2}=\left|-50\right|\\ \Leftrightarrow\sqrt{\left(5x\right)^2}=\left|-50\right|\\ \Leftrightarrow\left|5x\right|=50\\ \Leftrightarrow\left|x\right|=\dfrac{50}{5}\\ \Leftrightarrow x=10\)
Vậy x=10
Tìm x, biết
a) \(\sqrt{25x}=35\)
b) \(\sqrt{4x}\le162\)
c) \(3\sqrt{x}=\sqrt{12}\)
d) \(2\sqrt{x}\ge\sqrt{10}\)
a)√25x = 35
⇔5√x = 35
⇔√x = 7
⇔x = 49
b)√4x ≤ 162
⇔2√x ≤ 162
⇔√x ≤ 81
⇔x ≤ 6561
Suy ra : 0 ≤ x ≤ 6561
c)3√x = 12
⇔3√x = 2√3
⇔√x = 23√3
⇔x = (23√3)2
⇔x = −43
d) 2√x ≥ √10
⇔√x ≥ √102
⇔ x = 52
Tìm x biết
\(\sqrt{64x+64}-\sqrt{25x+25}+\sqrt{4x+4}=20\)
<=> \(\sqrt{64\left(x+1\right)}-\sqrt{25\left(x+1\right)}+\sqrt{4\left(x+1\right)}=20\)
<=> \(8\sqrt{\left(x+1\right)}-5\sqrt{\left(x+1\right)}+2\sqrt{\left(x+1\right)}=20\)
<=> . \(5\sqrt{\left(x+1\right)}=20\)
<=> \(\sqrt{\left(x+1\right)}=4\)
=> x+1=16
=> x=15
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
tìm x biết
b) x^10= 25x^8
Ta có: \(x^{10}=25\cdot x^8\)
- Với x=0 => x thỏa man đề bài.
- Với x khác 0 ta có:
\(x^{10}=25\cdot x^8\)
<=> \(\frac{x^{10}}{x^8}=25\)
<=> \(x^2=25\)
<=> \(x=\pm5\)
Vậy x\(\in\left\{-5;0;5\right\}\)
Ta có:
x10 = 25 . x8
=> x10 : x8 = 25
=> x2 = 25
=> x2 = 52 hoặc x2 = (-5)2
=> x = 5 hoặc x = -5
x^10= 25x^8 suy ra x^10-25x^8=0 suy ra x^8.(x^2-25)=0
suy ra x^8=0 hoặc x^2-25=0
Do đó x bằng 0 hoặc -5 hoặc 5
Tìm Min:
a) y= \(\sqrt{x^2+6x+10}\) - 3
b) y= \(\sqrt{\frac{x^2}{9}+2x+10}\)
c) y= \(\frac{-3}{\sqrt{\frac{x^2}{8}-2x+17}}\)
d) y= \(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
e) y= \(\sqrt{25x^2-20x+4}\)+ \(\sqrt{25x^2}\)
Tìm x biết
2,\(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
3,\(\sqrt{x^2-4x+4}=7x-1\)
2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(-\sqrt{x+2}=-9\)
\(x+2=81\)
\(\Rightarrow x=79\)
3) \(\sqrt{x^2-4x+4}=7x-1\)
\(\sqrt{x^2-2.x.2+2^2}=7x-1\)
\(\sqrt{\left(x-2\right)^2}=7x-1\)
\(x-2=7x-1\)
\(-2=7x-1-x\)
\(-2+1=7x-x\)
\(-1=6x\)
\(-\frac{1}{6}=x\)
\(\Rightarrow x=-\frac{1}{6}\)