Tìm m để pt có 4 nghiệm phân biệt
\(x^4-2x^2-\left(x-m\right)^2+1=0\)
Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3
Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)
(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3
Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1
Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi
8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)
Nếu m < 3, yêu cầu bài toán thỏa mãn khi
8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))
Nếu m = 3 thì phương trình trở thành
t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)
tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán
Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)
tìm m để pt: \(\left(x^2-2x+5\right)\left(x+1\right)\left(x-3\right)=m\)
có 4 nghiệm phân biệt
\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)
Đặt \(x^2-2x-3=t\) (1)
(1) có 2 nghiệm x phân biệt khi \(\Delta'=1-\left(-3-t\right)>0\Rightarrow t>-4\)
Khi đó pt đã cho trở thành:
\(\left(t+8\right)t=m\)
\(\Leftrightarrow t^2+8t=m\) (2)
Do (2) là pt bậc 2 có tối đa 2 nghiệm nên pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm pb đều lớn hơn -4
Từ đồ thị \(f\left(t\right)=t^2+8t\) ta thấy ko tồn tại m thỏa mãn
`x^2 +2x+m-1=0`
Tìm m để pt có 2 nghiệm phân biệt thỏa mãn:
1. \(x^3_1+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
2. \(x^2_1+2x_2+2x_1x_2+20=0\)
1: \(\Delta=2^2-4\cdot1\left(m-1\right)\)
\(=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(-2\right)^3-3\cdot\left(-2\right)\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(4\left(m^2-m\right)=8\)
=>\(m^2-m=2\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
2: \(x_1^2+2x_2+2x_1x_2+20=0\)
=>\(x_1^2-x_2\left(x_1+x_2\right)+2x_1x_2+20=0\)
=>\(x_1^2-x_2^2+x_1x_2+20=0\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)+m-1+20=0\)
=>\(-2\left(x_1-x_2\right)=-m-19\)
=>2(x1-x2)=m+19
=>\(x_1-x_2=\dfrac{1}{2}\left(m+19\right)\)
=>\(\left(x_1-x_2\right)^2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(-2\right)^2-4\left(m-1\right)=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(4-4m+4=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(m+19\right)^2=4\left(-4m+8\right)=-16m+32\)
=>\(m^2+38m+361+16m-32=0\)
=>\(m^2+54m+329=0\)
=>\(\left[{}\begin{matrix}m=-7\left(nhận\right)\\m=-47\left(nhận\right)\end{matrix}\right.\)
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
1. tìm m để pt \(\left|-x^2+4x+5\right|-1+m=0\) 0 có 4 nghiệm phân biệt
2. cho pt \(x^2+2\left(m+3\right)x+m^2-3=0\), m là tham số. gọi x1,x2 là 2 nghiệm của pt. tìm GTLN của \(P=5\left(x_1+x_2\right)-2x_1x_2\)
3. tìm m để pt \(x^2-2x=1-m-\left|x-1\right|\) có nghiệm duy nhất
giải hệ pt: \(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\\2x^2+xy+4y^2=5\end{matrix}\right.\)
tìm m để phương trình sau có 3 nghiệm phân biệt
\(x^4-4x^3+x^2+6x+m+2=0\) có 3 nghiệm phân biệt x1,x2,x3
\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)
\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)
\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)
\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)
\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)
\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)
\(pt:x^4-4x^3+x^2+6x+m+2=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)
\(đặt:x^2-2x=t\ge-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)
\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)
\(\Rightarrow f\left(-1\right)=4\)
\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)
\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)
tìm các giá trị của tham số m để pt \(\left(m-2\right)x^4-2\left(m+1\right)x^2-3=0\) có đúng 2 nghiệm phân biệt
Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)
Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)
Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn
\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt