Tìm nghiệm nguyên của pt: \(\sqrt{x+2\sqrt{x+2\sqrt{x+2\sqrt{3x}}}}=x\)
tìm m để pt \(\left(x^2-3x-4\right)\sqrt{x+7}-m\left(\sqrt{x^2-3x-4}-\sqrt{x+7}\right)=m\) có nhiều nghiệm nhất
Tìm m để pt sau có nghiệm thuộc đoạn [0;1]
\(3\sqrt{x}-4x=2\sqrt{x+3x^2}-3\sqrt{3x+1}=m\) ( với m là tham số )
Bạn kiểm tra lại đề, sao có 2 dầu = trong pt thế kia nhỉ?
B1: tìm m để pt có nghiệm: \(4\sqrt{-x^2+3x+4}+3x+4=m\left(2\sqrt{x+1}+\sqrt{4-x}\right)\)
b2: \(y=2x^2-3\left(m+1\right)x+m^2+3m-2\) tìm m để gtnn của hàm số là gt lớn nhất
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
Tìm nghiệm nguyên của pt : \(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}=y\)
Ta có: \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\)
\(\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=a\)
\(\Rightarrow x+\sqrt{x+\sqrt{x}}=a^2\)\(\Rightarrow\sqrt{x+\sqrt{x}}=a^2-x=b\)
\(\Rightarrow x+\sqrt{x}=b^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)
Có √x và √(x+1) là 2 số liên tiếp và b^2 là số chính phương nên √x =0 hoặc √x +1 =0
=> x =0 hoặc √x = -1 ( vô nghiệm)
Với x =0 => y=0
Vậy (x;y) = (0;0)
tìm m để pt có nghiệm
m(\(\sqrt{1+x^2}-\sqrt{1-x^2}++2\)) = \(2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}\)
tìm số nghiệm của pt \(x^3+\sqrt[]{x^2-9}=\sqrt[]{9-x^2}+27\)
ĐKXĐ: \(x=\pm3\)
Nếu \(x=3\), phương trình tương đương
\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)
\(\Leftrightarrow0=0\)
\(\Rightarrow x=3\) là nghiệm của phương trình
Nếu \(x=-3\), phương trình tương đương
\(x^3+\sqrt{x^2-9}-\sqrt{9-x^2}-27=0\)
\(\Leftrightarrow-54=0\)
\(\Rightarrow x=-3\) không phải là nghiệm của phương trình
Vậy ...
CMinh: x=\(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\) là nghiệm của pt \(x^3+3x-4\)
\(x^3=\sqrt{5}+2-\left(\sqrt{5}-2\right)-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}.x\)
\(x^3=4-3x\)
x^3 +3x -4 =0
=> dpcm
giải pt :
a, \(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}=\sqrt{3x^2-5x-1}+\sqrt{x^2-2}\)
b, \(\sqrt{x}+\sqrt{3-x}=x^2-x-2\)
c, \(\sqrt{x+6}+\sqrt{x-1}=x^2-1\)