\(x^3=\sqrt{5}+2-\left(\sqrt{5}-2\right)-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}.x\)
\(x^3=4-3x\)
x^3 +3x -4 =0
=> dpcm
\(x^3=\sqrt{5}+2-\left(\sqrt{5}-2\right)-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}.x\)
\(x^3=4-3x\)
x^3 +3x -4 =0
=> dpcm
cho A = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
tính giá trị của A khi:
a) x = \(\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{79}-\sqrt{81}}\)
b) x là nghiệm của phương trình :) \(\sqrt{2x^2-3x-5}=x-1\)
c) x mlà nghiệm của pt: |2x-6| = 3x +1
Giải pt : a) \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}\)
b) \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3x\)
c) \(2x^2-11x+2x=3\sqrt[3]{4x-4}\)
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right).\left(x^2-3x+5\right)}=4-2x\)
Giải PT a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\)
b. \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
c. \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
d. \(\sqrt{9x-2x^2}-9x+2x^2+6=0\)
e. \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
f. \(\sqrt{x^2+x-5}+\sqrt{x-x^2+3}=x^2-3x+4\)
giải pt \(\left(x+1\right)\left(2\sqrt{x^2+3}-x^2\right)+\sqrt[3]{3x^2+5}=5x+3\)
Giải các pt sau :
a) \(\sqrt{x+5}+\sqrt{x+2}+2x-1=0\)
b) \(\sqrt{5x^3-1}+\sqrt[3]{2x-2}+x-4=0\)
c) \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
d) \(\sqrt[3]{x^2}-2\sqrt[3]{x}-\left(x-4\right)\sqrt{x-7}-3x+28=0\)
Giair cacs pt sau:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
c. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
d. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
e. \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
f. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
câu 1
1 M=\(\frac{1}{2}\times\sqrt{32}-2\times\sqrt{50}+\frac{\sqrt{22}}{\sqrt{11}}+\sqrt{144}-\sqrt{25}\times\sqrt{4}-\frac{2}{\sqrt{3}-1}-\sqrt{3}+1\)
2 cho hpt a \(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\)
b\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\)
3 giải pt a 2x2 \(+\) 3x-5=0 b\(\sqrt{4x+4}=7\)
4 tìm gtrị của m để đths bậc nhất y=(2m\(+\)1)x-5=0 cắt trục hoành tại 1 điểm có hoành độ =-5
5 cho hpt\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\)(I)
xđ gtrị của m để nghiệm (x;y) của hpt (I) tm x\(+\)y=1
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)