Cho biểu thức :
\(B=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\frac{2-2\sqrt{x}}{\sqrt{x}}\)
với x > 0 và x ≠ 1
a, Rút gọn B
b, Tính giá trị của B khi :
1, \(x=\frac{1}{1+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{100}}\)
2, x là nghiệm của phương trình : \(\sqrt{x^2-x+2}=x\)
3, x là nghiệm của phương trình : \(\left|x-1\right|=\left|2x-5\right|\)
4 , x là giá trị làm cho biểu thức \(P=x-4\sqrt{x}+6\) đạt GTNN
Giải phương trình vô tỉ:
a) \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
c) \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
d) \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
e) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
g) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Giải PT a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\)
b. \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
c. \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
d. \(\sqrt{9x-2x^2}-9x+2x^2+6=0\)
e. \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
f. \(\sqrt{x^2+x-5}+\sqrt{x-x^2+3}=x^2-3x+4\)
Tìm ĐKXĐ của các biểu thức sau:
a. \(\sqrt{3-\sqrt{x}}\)
b. 2008\(\sqrt{2-\sqrt{x-1}}\)
c. \(\sqrt[4]{\frac{2}{-7+3x}}\)
d.\(\sqrt{x-1}+\frac{\sqrt[3]{x+1}}{\sqrt{5-x}}\)
e.\(\sqrt[8]{2x-1}-\sqrt[3]{3-5x}\)
f.\(\sqrt{\frac{2x^2}{2-x}}-\sqrt[4]{x-5}\)
g.\(\sqrt{\frac{3x-6-2x}{\sqrt[3]{1-x}}}\)
Tính
3) \(\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{2x-\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{3x\sqrt{x}-2x+\sqrt{x}-3}{x\sqrt{x}+1}\)
4) \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
5)\(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-5\sqrt{x}+6}\)
Help !!! Mk đang cần gấp ,thank các ben
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
câu 1
1 M=\(\frac{1}{2}\times\sqrt{32}-2\times\sqrt{50}+\frac{\sqrt{22}}{\sqrt{11}}+\sqrt{144}-\sqrt{25}\times\sqrt{4}-\frac{2}{\sqrt{3}-1}-\sqrt{3}+1\)
2 cho hpt a \(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\)
b\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\)
3 giải pt a 2x2 \(+\) 3x-5=0 b\(\sqrt{4x+4}=7\)
4 tìm gtrị của m để đths bậc nhất y=(2m\(+\)1)x-5=0 cắt trục hoành tại 1 điểm có hoành độ =-5
5 cho hpt\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\)(I)
xđ gtrị của m để nghiệm (x;y) của hpt (I) tm x\(+\)y=1