Giải phương trình, hệ phương trình:
a) \(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
b) \(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
c)\(\sqrt{x^2-3x+2}+\sqrt{x-3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
d)\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
giải phương trình sau:
a) \(5+x+2\sqrt{\left(4+x\right)\left(2x-2\right)}=4\left(\sqrt{4-x}+\sqrt{2x-2}\right)\)
b) \(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2020}=\frac{1}{2}xyz\)
Giải phương trình :
a,\(13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
b,\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
c,\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
d,\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
1) \(\dfrac{x-3x^2}{2}+\sqrt{2x^4-x^3+7x^2-3x+3}=2\)
2) \(1+\sqrt{\dfrac{x-2}{1-x}}=\dfrac{2x^2-2x+1}{x^2-2x+2}\)
3) \(x+y+z+\dfrac{3}{x-1}+\dfrac{3}{y-1}+\dfrac{3}{z-1}=2\left(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2}\right)\) với x ,y ,z > 1
4) \(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
5) \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
Bài 1: Tìm x
a, \(\sqrt{4x+1}\) = 4
b, \(\sqrt{3-x}\) = 2
c, \(\sqrt{x+1}\) + \(\frac{1}{2}\sqrt{4x+4}\) = 6 - \(\frac{1}{3}\sqrt{9x+9}\)
d, \(\sqrt{4x^2-12x+9}\) - x = 5
e, \(\sqrt{16x^2+8x+1}\) = 10
Bài 2: Tìm x,y,z
x + y + z = 2\(\sqrt{x}\)+ 2\(\sqrt{y-3}\) + 2\(\sqrt{z}\)
Bài 3: Cho x < y < 0
Rút gọn \(\sqrt{x^2}+\sqrt{y^2}-\sqrt{x^2-2xy+y^2}\)
Bài 4: Tìm GTNN
a, x - 2\(\sqrt{x}\) + 3
b, \(\sqrt{x-4\sqrt{y}+13}\)
c, \(\sqrt{2x-4\sqrt{y}+6}\)
d, \(-\frac{4}{x^2+2x+5}\)
Bài 5: Cho A = \(\frac{3\sqrt{x}+11}{\sqrt{x}+2}\)
Tìm x ϵ Z để A nguyên