Chế đề:D
Cho \(x^2y^2+y^2z^2+z^2x^2=xyz\) Tìm max của P = x +y + z
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
Cho xy+yz+zx=2xyz ; x,y,z>0 Tìm max \(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)
Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:
\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)
\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)
cho x^2+y^2+z^2=3 a cmr x^2y+y^2z+z^2x=<2+xyz b tim max min x/y+2+y/z+2+z/x+2
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh
\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)
\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)
t nghĩ ôg có chút nhầm lẫn , phải là sigma (1/2b+a+3) </ 1/2
Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
Cho x,y,z >0 / x^2 +y^2 +z^3 =3.,
Tìm max P= x/ (x^2 +2y+3) + y/(y^2 +2z+3) +z/(z^2 + 2x +3)
cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
Ta sẽ chứng minh \(P_{min}=1\)
TH1: \(xyz=0\)
\(\Rightarrow x^2y^2z^2=0\Rightarrow x^4+y^4+z^4=1\)
\(P=x^2+y^2+z^2\ge\sqrt{x^4+y^4+z^4}=1\)
TH2: \(xyz\ne0\) , từ điều kiện, tồn tại 1 tam giác nhọn ABC sao cho \(\left\{{}\begin{matrix}x^2=cosA\\y^2=cosB\\z^2=cosC\end{matrix}\right.\)
\(P=cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\)
Ta sẽ chứng minh \(cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\ge1\)
\(\Leftrightarrow4sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}\ge\sqrt{2cosA.cosB.cosC}\)
\(\Leftrightarrow8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}\ge cosA.cosB.cosC\)
\(\Leftrightarrow\dfrac{8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}}{8sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}cos\dfrac{A}{2}cos\dfrac{B}{2}cos\dfrac{C}{2}}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tanA.tanB.tanC\ge cot\dfrac{A}{2}cot\dfrac{B}{2}cot\dfrac{C}{2}\)
\(\Leftrightarrow tanA+tanB+tanC\ge cot\dfrac{A}{2}+cot\dfrac{B}{2}+cot\dfrac{C}{2}\)
Ta có:
\(tanA+tanB=\dfrac{sin\left(A+B\right)}{cosA.cosB}=\dfrac{2sinC}{cos\left(A-B\right)-cosC}\ge\dfrac{2sinC}{1-cosC}=\dfrac{2sin\dfrac{C}{2}cos\dfrac{C}{2}}{2sin^2\dfrac{C}{2}}=cot\dfrac{C}{2}\)
Tương tự: \(tanA+tanC\ge cot\dfrac{B}{2}\) ; \(tanB+tanC\ge cot\dfrac{A}{2}\)
Cộng vế với vế ta có đpcm
Vậy \(P_{min}=1\) khi \(\left(x^2;y^2;z^2\right)=\left(1;0;0\right)\) và các hoán vị hoặc \(\left(x^2;y^2;z^2\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
cho x, y, z \(\in Z^+\)và xyz=1.CMR: \(\dfrac{x^2y^2}{2x^2+y^2+3x^2y^2}+\dfrac{y^2z^2}{2y^2+z^2+3y^2z^2}+\dfrac{z^2x^2}{2z^2+x^2+3y^2z^2}\le\dfrac{1}{2}\)
Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)
Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)
\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)
\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)
Quay lại bài toán, sau khi đặt bài toán trở thành:
\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)
\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)
Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)