2cos2x+cos5x=3
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
Giải PT
a1) \(\dfrac{\left(1-2\sin x\right)\cos x}{\left(1+2\sin x\right)\left(1-\sin x\right)}=\sqrt{3}\)
a2) \(2\sin17x+\sqrt{3}\cos5x+\sin5x=0\)
a3) \(\)\(\cos7x-\sin5x=\sqrt{3}\left(\cos5x-\sin7x\right)\)
a4) \(\sqrt{3}\cos5x-2\sin3x\cos2x-\sin x=0\)
a5) \(\tan x+\cot x=2\left(\sin2x+\cos2x\right)\)
y=sin(4x-pi/3)*cos5x
\(y'=4cos\left(4x-\dfrac{\pi}{3}\right)cos5x-5sin5x.sin\left(4x-\dfrac{\pi}{3}\right)\)
\(\sqrt{3}Cos5x-2Sin3xCos2x-Sinx=0\)
\(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
⇔ \(\sqrt{3}cos5x-\left(sinx+sin5x\right)-sinx=0\)
⇔ \(\sqrt{3}cos5x-sin5x-2sinx=0\)
⇔ \(2sin\left(\dfrac{\pi}{3}-5x\right)=2sinx\)
⇔ \(2sin\left(5x-\dfrac{\pi}{3}\right)=2sin\left(-x\right)\)
Giải nốt nhé
\(\sqrt{3}\)Cos5x - 2Sin3x.Cos2x - Sinx =0
\(\Leftrightarrow\sqrt{3}\)Cos5x -(Sin5x +Sinx ) -Sinx =0
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\)Cos5x - \(\dfrac{1}{2}\)Sin5x =Sinx
\(\Leftrightarrow\)Sin (\(\dfrac{\pi}{3}\) - 5x )=Sinx
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\pi}{3}-5x=x+k2\pi\\\dfrac{\pi}{3}-5x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\pi}{18}-k\dfrac{\pi}{3}\\x=\dfrac{-\pi}{6}-k\dfrac{\pi}{2}\end{matrix}\right.\)
\(\Rightarrow\) Vậy pt có 2 ng x=\(\dfrac{\pi}{18}-k\dfrac{\pi}{3}\)và x=\(\dfrac{-\pi}{6}-k\dfrac{\pi}{2}\),k\(\varepsilon\)Z
107. Pt √3 . tan2x +3=0 có bao nhiêu nghiệm thuộc khoảng (2000π ; 2018π) ( căn ngang số 3 thôi nhé)
A. 37
B. 40
C. 36
D. 35
108. Pt cos5x = 1/√2 có bao nhiêu nghiệm thuộc đoạn [-50π ; 0]
A. 124
B. 125
C. 250
D. 249
109. Pt sin2x = -1/2 có bao nhiêu nghiệm thuộc khoảng (0;π)
A. 1
B. 3
C. 2
D. 4
110. Pt 1+ 2cos2x =0 có nghiệm là? ( Bấm máy)
107.
\(\Leftrightarrow tan2x=-\sqrt{3}\)
\(\Leftrightarrow2x=-\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)
\(2000\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le2018\pi\)
\(\Leftrightarrow4000+\frac{1}{3}\le k\le4036+\frac{1}{2}\)
Có \(4036-4001+1=36\) nghiệm
108.
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{4}+k2\pi\\5x=-\frac{\pi}{4}+n2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k2\pi}{5}\\x=-\frac{\pi}{20}+\frac{n2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-50\pi\le\frac{\pi}{20}+\frac{k2\pi}{5}\le0\\-50\pi\le-\frac{\pi}{20}+\frac{n2\pi}{5}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-125-\frac{1}{8}\le k\le-\frac{1}{8}\\-125+\frac{1}{8}\le n\le\frac{1}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-125\le k\le-1\\-124\le n\le0\end{matrix}\right.\)
Có \(-1-\left(-125\right)+1+0-\left(-124\right)+1=250\) nghiệm
109.
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0< -\frac{\pi}{12}+k\pi< \pi\\0< \frac{7\pi}{12}+k\pi< \pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{12}< k< \frac{13}{12}\\-\frac{7}{12}< k< \frac{5}{12}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) có 2 nghiệm
110.
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
Ko có đáp án chọn nên ko thể bấm được, chỉ giải được tự luận thôi :)
\(\lim\limits_{x\rightarrow0}\dfrac{\sin x-\sqrt{3}\cos5x}{3x}\)
\(=\dfrac{1}{3}\lim\limits_{x\rightarrow0}\dfrac{sinx}{x}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{1}{3}-\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\)
Xét:
\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{3}cos5x}{3x}=\dfrac{\sqrt{3}}{0}=+\infty\)
\(\lim\limits_{x\rightarrow0^-}\dfrac{-\sqrt{3}cos5x}{-3x}=\dfrac{-\sqrt{3}}{0}=-\infty\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{\sqrt{3}cos5x}{3x}\) ko tồn tại nên giới hạn đã cho không tồn tại
tính \(\lim\limits_{x\rightarrow0}\dfrac{\sin x-\sqrt{3}\cos5x}{3x}\)
A = (2cosx - 1)(2cos2x + 2sinx +3) +sin2x - 3
giải phương trình
1.\(2sin15x+\sqrt{3}cos5x+sin5x=0\)
2.\(\left(cos2x-\sqrt{3}sin2x\right)-\sqrt{3}sinx-cosx+4=0\)
3.\(cos7x-sin5x=\sqrt{3}\left(cos5x-sin7x\right)\)
4.\(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
1.
\(\Leftrightarrow sin5x+\sqrt{3}cos5x=-2sin15x\)
\(\Leftrightarrow\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x=-sin15x\)
\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(-15x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=-15x+k2\pi\\5x+\frac{\pi}{3}=\pi+15x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{60}+\frac{k\pi}{10}\\x=-\frac{\pi}{15}+\frac{k\pi}{5}\end{matrix}\right.\)
2.
\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=2\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) với mọi x
\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)