cho tam giác ABC góc a =90độ, góc c=α ,sinα=2/5 tính cos, tan ,cot
Cho tam giác ABC vuông tại A,AC=5,cot của góc B=2,4.Tính AB,BC.Tính sin,cos,tan,cot của góc C
Bài 5: Cho góc nhọn α, biết sin α = 2/3. Không tính số đo góc, hãy tính cos α, tan α, cot α
`sin^2 α+cos^2α=1`
`<=> (2/3)^2+cos^2α=1`
`=> cosα= \sqrt5/3`
`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`
`=> cota = 1/(tanα)=sqrt5/2`
Cho góc nhọn α, biết cos α = 3/4. Không tính số đo góc, hãy tính cos α, tan α, cot α
`sin^2 α+cos^2 α =1`
`=> sinα =\sqrt(1-cos^2α)=\sqrt(1-(3/4)^2) = \sqrt7/4`
`=> tanα=(sinα)/(cosα)=(3\sqrt7)/7`
`=> cotα=1/(tanα)=\sqrt7/3`
Đề bài cho cos rồi tính cos làm gì nhỉ =))) Mình tính sin thay vào chỗ đấy nhé.
-------------------------------------------------------------------------------------------------------
\(cos\alpha=\dfrac{3}{4}\Rightarrow cos^2\alpha=\dfrac{9}{16}\)
Mà \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)
\(\Rightarrow cos\alpha=\dfrac{\sqrt{7}}{4}\\ \Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{\dfrac{\sqrt{7}}{4}}=\dfrac{3\sqrt{7}}{7}\\ \Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{\sqrt{7}}{3}\)
Cho góc nhọn α, biết cos α = \(\dfrac{1}{5}\). Tính sin α, tan α, cot α.
\(sin\alpha^2+cos\alpha^2=1\Rightarrow sin\alpha^2=1-cos\alpha^2=1-\dfrac{1}{25}=\dfrac{24}{25}\Rightarrow sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{25}=\dfrac{24}{25}\)
hay \(\sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(\cot\alpha=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
Cho góc nhọn α có cot α = 2/3 . Tính sin α, cos α, tan α
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
cho góc nhọn α, biết sin α = 0,6 .Không tính số đo góc α, hãy tính cos α, tan α, cot α
\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)
C/M:
a) Cot α+ \(\dfrac{Sinα}{1+Cos α }\)= \(\dfrac{1}{Sinα }\)
b)\(\dfrac{1}{1-Sinα}\)+\(\dfrac{1}{1+Sinα}\)= \(\dfrac{2}{Cos^{2}α}\)
\(a,VT=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}\\ =\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\\ =\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{cos\alpha+1}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{1}{sin\alpha}=VP\left(dpcm\right)\)
\(b,VT=\dfrac{1}{1-sin\alpha}+\dfrac{1}{1+sin\alpha}\\ =\dfrac{1+sin\alpha+1-sin\alpha}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}\\ =\dfrac{2}{1-sin^2\alpha}\\ =\dfrac{2}{cos^2\alpha}=VP\left(dpcm\right)\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs