\(\sqrt{8+2\sqrt{7}}-\sqrt{28}\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
Bài 1:Tìn ĐKXĐ
a.\(\sqrt{\dfrac{2}{^{^{^{ }}}x^2}}\)
b.\(\sqrt{\dfrac{-3}{3x+5}}\)
Bài 2:
a.\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
c,\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
tính:giải chi tiết nha
\(\sqrt{29-4\sqrt{7}}\)
\(\sqrt{19+6\sqrt{2}}\)
\(\sqrt{28-6\sqrt{3}}\)
\(\sqrt{46-6\sqrt{5}}\)
\(\sqrt{49+8\sqrt{3}}\)
\(\sqrt{32-8\sqrt{7}}\)
\(\sqrt{29-4\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.1+1^2}=\sqrt{\left(2\sqrt{7}-1\right)^2}=\left|2\sqrt{7}-1\right|\)
\(=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.1+1^2}=\sqrt{\left(3\sqrt{2}+1\right)^2}=\left|3\sqrt{2}+1\right|\)
\(=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=\sqrt{\left(3\sqrt{3}\right)^2-2.3\sqrt{3}.1+1^2}=\sqrt{\left(3\sqrt{3}-1\right)^2}=\left|3\sqrt{3}-1\right|\)
\(=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.1+1^2}=\sqrt{\left(3\sqrt{5}-1\right)^2}=\left|3\sqrt{5}-1\right|\)
\(=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=\sqrt{\left(4\sqrt{3}\right)^2+2.4\sqrt{3}.1+1^2}=\sqrt{\left(4\sqrt{3}+1\right)^2}=\left|4\sqrt{3}+1\right|\)
\(=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.2+2^2}=\sqrt{\left(2\sqrt{7}-2\right)^2}=\left|2\sqrt{7}-2\right|\)
\(=2\sqrt{7}-2\)
\(\sqrt{29-4\sqrt{7}}=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=2\sqrt{7}-2\)
Tính
1.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
2. \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
1) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Xin lỗi xin lỗi :v
1)\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
= \(\sqrt{7}.\left(3\sqrt{7}-2\sqrt{14}\right)+14\sqrt{2}\)
= 21 - \(14\sqrt{2}+14\sqrt{2}\)
= 21
2) \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
= \(\left(2\sqrt{2}-\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{5}-2\sqrt{2}\right)\)
= \(\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)\)
=\(\left(\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2\)
= -3
rút gọn
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
giúp mink vs ạ
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)
\(=21-14\sqrt{2}+14\sqrt{2}\)
=21
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
Bạn ơi ! Cho mình hỏi,đề bài yêu cầu gì vậy bạn ?
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+7\sqrt{8}\)
\(=21-14\sqrt{2}+14\sqrt{2}=21\)
rút gọn
A=\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
B=\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
C=\(\left(\sqrt{7}-\sqrt{10}\right)^2+\sqrt{280}\)
D=\(\dfrac{\sqrt{99}}{\sqrt{11}}+\sqrt{7}\cdot\sqrt{63}-\sqrt{\sqrt{81}}\)
E=\(\sqrt{27}\left(s-\sqrt{5}\right)^2\cdot\left(3\sqrt{48}\right)\)
giải chi tiết ra giúp mik nha,cảm ơn nhiều
Rút gọn: (Giải chi tiết từng bước)
7) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
8) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.
`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.
`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.
`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.
`= 7`.
`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`
`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`
`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`
`= 33 - 11 = 22`.
rút gọn: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
Lời giải:
\((\sqrt{28}-2\sqrt{14}+\sqrt{7})\sqrt{7}+7\sqrt{8}\)
\(=(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7})\sqrt{7}+14\sqrt{2}\)
\(=\sqrt{7}(2-2\sqrt{2}+1).\sqrt{7}+14\sqrt{2}\)
\(=7(3-2\sqrt{2})+14\sqrt{2}=21-14\sqrt{2}+14\sqrt{2}=21\)