chứng minh rằng ai = im
Cho hình 43. Chứng minh rằng AI = IM.
ΔBDC có BE = ED và BM = MC
⇒ EM là đường trung bình của ΔBDC
⇒ EM // DC hay EM // DI.
ΔAEM có DI // EM (cmt) và AD = DE (gt)
⇒ IA = IM (Theo định lý 1)
Chứng minh rằng AI = IM : Hình 43 SGK Toán 8
cho hình 43.Chứng minh rằng AI=IM
△BDC có ED = EB
MB = MC
⇒ EM là đường trung bình của tam giác này (Theo định nghĩa: đoạn thẳng nối trung điểm hai cạnh của một tam giác là đường trung bình của tam giác đó) ⇒ ME//CD
△AME có DA = DE (gt)
DI//ME (cmt)
⇒ IA = IM (Theo định lí: đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ 3)
\(\Delta BDC\) có BE=ED và BM=MC
nên EM// CD
\(\Rightarrow DI//EM\)
\(\Delta AEM\) có AD=DE và DI//EM
nên AI//IM
Cho tam giác ABC cân tại A. Kẻ ( ).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
c) Chứng minh: .HK song song BC
Cho tam giác ABC cân tại A. Kẻ ( ).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
c) Chứng minh: .HK song song BC
Cho tam giác ABC cân tại A, hai đường cao BH và CK ( ).
a) Chứng minh ∆ ABH=∆ACK
b) Chứng minh tam giác AKH là tam giác cân
c) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
d) Chứng minh: .HK//BC
Cho ΔABC cân tại A, với đường trung tuyến AI: a, Chứng minh ΔABI = ΔACI b, Chứng minh AI vuông góc với BC c, Kẻ đường trung tuyến BM. Biết AC = 8 cm. Tính IM d, Chứng minh IM // AB Chỉ cần câu c và d
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
DO đó: ΔABI=ΔACI
b: Ta có:ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Cho ΔABC cân tại A, với đường trung tuyến AI: a, Chứng minh ΔABI = ΔACI b, Chứng minh AI vuông góc với BC c, Kẻ đường trung tuyến BM. Biết AC = 8 cm. Tính IM d, Chứng minh IM // AB Chỉ cần câu c và d
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: AC=8cm
nên AB=8(cm)
Xét ΔBAC có
I là trung điểm của BC
M là trung điểm của AC
Do đó: IM là đường trung bình
=>IM=AB/2=8/2=4(cm)
Cho hình 43. Chứng minh rằng AI = IM.
t/g DBC có :
ED = EB ( gt )
MB = MC ( gt )
Nên EM là đường trung bình của tam giác DBC
\(\Rightarrow\)EM // DC
T/g AEM có :
DA = DE ( gt )
DI // EM ( cmt , vì EM // DC )
Theo định lý 1 ta có :
AI = IM ( đpcm )
o0o Nguyễn Việt Hiếu o0o hướng chứng minh dùng đường trung bình của tam giác thì đúng
cơ mà định lí 1 là định lí nào? ghi như vậy không được