x2-25
x2+10x+25
x2-6x+xy-6y
x2-2x-y2+1
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
Tìm x:
1) ( 4x3 + 3x3) : x3+ ( 15x2 + 6x) : ( -3x) = 0
2) ( 25x2 - 10x) : 5x + 3 ( x - 2 ) = 4
3) ( 3x + 1 )2 - ( 2x + 1/2 ) 2 = 00
4) x2 + 8x + 16 = 0
5) 25 - 10x + x2 = 0
`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`
`<=> 4 + 3 + (-5x) + (-2)=0`
`<=> -5x+5=0`
`<=>-5x=-5`
`<=>x=1`
`2,(25x^2-10x):5x +3(x-2)=4`
`<=> 5x - 2 + 3x-6=4`
`<=> 8x -8=4`
`<=> 8x=12`
`<=>x=12/8`
`<=>x=3/2`
`3,(3x+1)^2-(2x+1/2)^2=0`
`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`
`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`
`<=>( x+1/2) (5x+3/2)=0`
`@ TH1`
`x+1/2=0`
`<=>x=0-1/2`
`<=>x=-1/2`
` @TH2`
`5x+3/2=0`
`<=> 5x=-3/2`
`<=>x=-3/2 : 5`
`<=>x=-15/2`
`4, x^2+8x+16=0`
`<=>(x+4)^2=0`
`<=>x+4=0`
`<=>x=-4`
`5, 25-10x+x^2=0`
`<=> (5-x)^2=0`
`<=>5-x=0`
`<=>x=5`
Phân tích thành nhân tử:
A = (6x - 3y) + (4x2 - 4xy + y2)
B= 9x2 - (y2 - 4y + 4)
C= -25x2 + y2 - 6y + 9
D= x2 - 4x - y2 - 8y -12
\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)
\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)
\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)
a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)
\(=3\left(2x-y\right)+\left(2x-y\right)^2\)
\(=\left(2x-y\right)\left(2x-y+3\right)\)
b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)
\(=9x^2-\left(y-2\right)^2\)
\(=\left(3x-y+2\right)\left(3x+y-2\right)\)
Bài 1) a) (2x+3y)2
b) (25x2-10x+1)
c) (x2-2y)2
d) 16x2-9y2
Bài 2) Tìm GTNN của biểu thức
D= x2+2y2-2xy-6y+2x+2020
Q= 2x2-4xy+y2-4x+6y+10
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
a) (a - 2b)x(a + 2b)
b) x2-(y-3)2
=> (x-y+3)(x+y-3)
c) (2a + b - a)(2a + b + a)
=> (a+b)(3a+b)
d) (4(x - 1))2 - (5(x + y))2
⇔ (4x - 4 - 5x - 5y)(4x - 4 + 5x + 5y)
⇔ -(x + 5y + 4)(9x + 5y + -4)
e) (x + 5)2
f) (5x - 2y)2
h) (x - 5)(x2 + 5x + 25)
k) (x + 5)3
Bài 1: Làm tính nhân:
a) 2x. (x2 – 7x -3) b) ( -2x3 + y2 -7xy). 4xy2
c)(-5x3). (2x2+3x-5) d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4) f) ( 2x3 -3x -1). (5x+2)
g) ( 25x2 + 10xy + 4y2). ( ( 5x – 2y) h) ( 5x3 – x2 + 2x – 3). ( 4x2 – x + 2)
a) \(2x\left(x^2-7x-3\right)=2x.x^2-2x.7x-2x.3=2x^3-14x^2-6x\)
b) \(\left(-2x^3+y^2-7xy\right)4xy^2=\left(-2x^3\right)4xy^2+y^24xy^2-7xy.4xy^2=-8x^4y^2+4xy^4-28x^2y^3\)
c) \(\left(-5x^3\right)\left(2x^2+3x-5\right)=-5x^32x^2-5x^33x-5x^3.-5=-10x^5-15x^4+25x^3\)
d) \(\left(2x^2-xy+y^2\right)\left(-3x^3\right)=-3x^32x^2-3x^3.-xy-3x^3y^2=-6x^5+3x^4y-3x^3y^2\)
e) \(\left(x^2-2x+3\right)\left(x-4\right)=x\left(x^2-2x+3\right)-4\left(x^2-2x+3\right)=x^3-2x^2+3x-4x^2+8x-12=x^3-6x^2+11x-12\)
f) \(\left(2x^3-3x-1\right)\left(5x+2\right)=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)=10x^4-15x^2-5x+4x^3-6x-2=10x^4+4x^3-15x^2-11x-2\)
g)
\(\left(25x^2+10xy+4y^2\right).\left((5x-2y\right)\)
\(=125x^3-50x^2y+20x^2y-20xy^2+20xy^2-8y^3\)
\(=125x^3-30x^2y+8y^3\)
h)
\(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-5x^4+10x^3-4x^4+x^3-2x^2+8x^3-2x^2+4x-12x^2+3x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
Phân tích đa thức thành nhân tử:
a) 64x3-16x2+x
b) 36-4xy+24y-x2
c) x2+10x-2010.2020
d) 25x2-121+22y-y2
e) (x2+2x)(x2+2x-2)-3
a.
$64x^3-16x^2+x=x(64x^2-16x+1)$
$=x(8x-1)^2$
b.
$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$
$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$
$=(6-x)(x+4y+6)$
c.
$x^2+10x-2010.2020$
$=x^2+10x-(2015-5)(2015+5)
$=x^2+10x-(2015^2-5^2)$
$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$
$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$
d.
$25x^2-121+22y-y^2$
$=(5x)^2-(y^2-22y+11^2)$
$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$
e.
$(x^2+2x)(x^2+2x-2)-3$
$=(x^2+2x)^2-2(x^2+2x)-3$
$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$
$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$
$=(x^2+2x+1)(x^2+2x-3)$
$=(x+1)^2[x(x-1)+3(x-1)]$
$=(x+1)(x-1)(x+3)$
a: \(64x^3-16x^2+x\)
\(=x\left(64x^2-16x+1\right)\)
\(=x\left(8x-1\right)^2\)
b: \(36-4xy+24y-x^2\)
\(=-\left(x-6\right)\left(x+6\right)-4y\left(x-6\right)\)
\(=\left(x-6\right)\left(-x-6-4y\right)\)
c: \(x^2+10x-2010\cdot2020\)
\(=x^2+2020x-2010x-2010\cdot2020\)
\(=x\left(x+2020\right)-2010\left(x+2020\right)\)
\(=\left(x+2020\right)\left(x-2010\right)\)
a) 2x. (x2 – 7x -3)
b) ( -2x3 + y2 -7xy). 4xy2
c)(-5x3). (2x2+3x-5)
d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4)
f) ( 2x3 -3x -1). (5x+2)
g) ( 25x2 + 10xy + 4y2). ( 5x – 2y)
h) ( 5x3 – x2 + 2x – 3). ( 4x2 – x + 2)
a,\(4x^2-14x^2-6x=-10x^2-6x\)
các câu còn lại làm tg tuj
a) 2x.(x2 - 7x - 3)
= 2xx2 + 2x(-7x) + 2x(-3)
= 2x2x - 2.7xx - 2.3x
= 2x3 - 14x2 - 6x
Viết các đa thức sau thành bình phương của một tổng hay một hiệu:
a) x2 + 2x + 1
b) x2 - 4x + 4
c) x2 + 6xy + 9y2
d) z2 - z + \(\dfrac{1}{4}\)
e) 25x2 - 10x + 1
a) \(x^2+2x+1=x^2+2\cdot x\cdot1+1^2=\left(x+1\right)^2\)
b) \(x^2-4x+4=x^2-2\cdot x\cdot2+2^2=\left(x-2\right)^2\)
c) \(x^2+6xy+9y^2=x^2+2\cdot x\cdot3y+\left(3y\right)^2=\left(x+3y\right)^2\)
d) \(z^2-z+\dfrac{1}{4}=z^2-2\cdot z\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(z-\dfrac{1}{2}\right)^2\)
e) \(25x^2-10x+1=\left(5x\right)^2-2\cdot5x\cdot1+1^2=\left(5x-1\right)^2\)