rút gọn biểu thức
\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}\)
rút gọn biểu thức (3\(\sqrt{2}\)-\(\sqrt{8}+\sqrt{14}\))\(\sqrt{2}-\sqrt{7}\)
\(=\left(3\sqrt{2}-2\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =\left(\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =2+2\sqrt{7}-\sqrt{7}\\ =2+\sqrt{7}\)
rút gọn biểu thức:
\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}\)
\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}=\) \(\sqrt{1-2\sqrt{7}+7}-\sqrt{7-2.4.\sqrt{7}+16}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-4\right)^2}\)
\(=\sqrt{7}-1-\left(-\sqrt{7}+4\right)\)
\(=\sqrt{7}-1+\sqrt{7}-4\)\(=2\sqrt{7}-5\)
chúc bn học tốt
=\(\sqrt{\left(\sqrt{7}-1\right)^2}\)- \(\sqrt{\left(4-\sqrt{7}\right)^2}\)
= \(\sqrt{7}\)- 1 - 4 + \(\sqrt{7}\)
= \(2\sqrt{7}\)-5
đ/á ra hơi kì
#mã mã#
mình nghĩ là hai bn làm đúng đó
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
Giá trị rút gọn của biểu thức \(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2\)
\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2\)
\(=8+3\sqrt{7}+8-3\sqrt{7}+2\sqrt{64-63}\)
\(=16+2=18\)
Rút gọn các biểu thức
1) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
2) \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
a, \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
b, \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+1+2-\sqrt{2}=3\)
câu 1 đã làm
câu 2
\(\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\sqrt{2}+1+\sqrt{2}-2\Leftrightarrow2\sqrt{2}-1\)
\(2-\sqrt{2}< 0\) thì căn bình phương của nó sẽ ra \(\sqrt{2}-2\)
bạn làm bên dưới bỏ dấu căn mà k biết bên trong biểu thức âm hay dương , giữu nguyên \(2-\sqrt{2}\) thic cx cạn cmn lời
\(\sqrt{\dfrac{\left(2-\sqrt{5}\right)^2}{8}}\)
\(\dfrac{7}{3\sqrt[]{14}}\)
Hãy rút gọn 2 biểu thức trên
`\sqrt(((2-\sqrt5)^2)/8)`
`= (\sqrt((2-\sqrt5)^2))/(\sqrt8)`
`= (|2-\sqrt5|)/(2\sqrt2)`
`=(\sqrt5-2)/(2\sqrt2)`
`=(\sqrt10-2\sqrt2)/4`
.
`7/(3\sqrt14) = (\sqrt7 .\sqrt7)/(3.\sqrt7 .\sqrt2)`
`=(\sqrt7)/(3\sqrt2)`
`=(\sqrt14)/(3.2)`
`=(\sqrt14)/6`
\(\sqrt{\dfrac{\left(2−\sqrt{5}\right)^2}{8}}\)= \(\dfrac{\sqrt{5}-2}{2\sqrt{2}}\)
\(\dfrac{7}{3\sqrt{14}}\) = \(\dfrac{\sqrt{7}}{3\sqrt{2}}\)
\(\sqrt{\dfrac{\left(2-\sqrt{5}\right)^2}{8}}=\dfrac{\sqrt{5}-2}{2\sqrt{2}}=\dfrac{\sqrt{10}-2\sqrt{2}}{4}\)
\(\dfrac{7}{3\sqrt{14}}=\dfrac{7\sqrt{14}}{42}=\dfrac{\sqrt{14}}{6}\)
Giá trị rút gọn của biểu thức là...
\(\left(\sqrt{8+3\sqrt{7}+\sqrt{8-3\sqrt{7}}}\right)^2\)
=\(8+3\sqrt{7}+8-3\sqrt{7}+2\sqrt{64-63}\)
=16+2=18
\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2=16+2\sqrt{8^2-\left(3\sqrt{7}\right)^2}=16+2=18\)
\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2\)
\(=8+3\sqrt{7}+2\sqrt{\left(8+3\sqrt{7}\right)\left(8-3\sqrt{7}\right)}+8-3\sqrt{7}\)
\(=16\cdot\sqrt{8^2-\left(3\sqrt{7}\right)^2}=16\cdot1=16\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
A=\(\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
đề bài là rút gọn biểu thức
help mee
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)
\(\Leftrightarrow A=0\)
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`